
SimEvents
For Use with Simulink®

Modeling

Simulation

Implementation

User’s Guide
Version 1

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

SimEvents User’s Guide
© COPYRIGHT 2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
November 2005 Online only New for Version 1.0 (Release 14SP3+)

Contents

Working with Entities

1
Generating Entities When Events Occur 1-2

Detecting Sample Time Hits . 1-2
Detecting Changes in Signal Values 1-4
Detecting Edges in Trigger Signals 1-5
Detecting Function Calls . 1-7

Setting Attributes of Entities . 1-11
Example: Setting Attributes . 1-12
When to Use Attributes . 1-14

Accessing Attributes of Entities . 1-17

Counting Entities . 1-18
Counting Departures Across the Simulation 1-18
Counting Departures per Time Instant 1-18
Resetting a Counter Upon an Event 1-20
Associating Each Entity with Its Index 1-21

Replicating Entities on Multiple Paths 1-22
Departure Port Precedence . 1-23

Working with Events

2
Supported Events in SimEvents Models 2-2

Types of Supported Events . 2-2
Signal-Based Events . 2-3
Function Calls . 2-7

Using the Event Calendar . 2-9

i

Events That Appear on the Event Calendar 2-9
Example: Event Calendar for a Queue-Server Model 2-11
Setting Event Priorities . 2-19
Processing Sequence for Simultaneous Events 2-21
Example: Race Conditions at a Switch 2-23

Observing Events . 2-28
Example: Observing Service Completions 2-30
Example: Detecting Collisions by Comparing Events 2-32

Generating Function-Call Events 2-34
Generating Events When Other Events Occur 2-34
Generating Events Using Intergeneration Times 2-36

Manipulating Events . 2-37
Blocks for Manipulating Events . 2-37
Creating a Union of Multiple Events 2-38
Translating Events to Control the Processing Sequence . . 2-41
Conditionalizing Events . 2-42

Working with Signals

3
Role of Event-Based Signals in SimEvents Models 3-2

Comparison With Time-Based Signals 3-2

Generating Random Signals . 3-4
Generating Random Event-Based Signals 3-4
Examples of Random Event-Based Signals 3-6
Generating Random Time-Based Signals 3-8

Sequence of Updates of Output Signals 3-10
Example: Detecting Changes in the Last-Updated

Signal . 3-10

Multiple Simultaneous Updates . 3-13
Zero-Duration Values of Signals . 3-13
Importance of Zero-Duration Values 3-14

ii Contents

Detecting Zero-Duration Values . 3-14

Latency in Signal Updates . 3-17

Manipulating Signals . 3-18
Defining Initial Conditions for Event-Based Signals 3-18
Example: Resampling a Signal Based on Events 3-20

Sending Data to the MATLAB Workspace 3-23
Example: Sending Queue Length to the Workspace 3-23
Using the To Workspace Block with Event-Based

Signals . 3-24

Modeling Queues and Servers

4
Using a LIFO Queuing Discipline 4-2

Example: Waiting Time in LIFO Queue 4-2

Sorting by Priority . 4-5
Example: Serving Preferred Customers First 4-6

Preempting an Entity in a Server 4-10
Criteria for Preemption . 4-10
Residual Service Time . 4-10
Queuing Disciplines for Preemptive Servers 4-11
Example: Preemption by High-Priority Entities 4-11

Modeling Multiple Servers . 4-13
Example: M/M/5 Queuing System . 4-13

Modeling the Failure of a Server . 4-16
Server States . 4-16
Using a Gate to Implement a Failure State 4-16
Using Stateflow to Implement a Failure State 4-17

iii

Routing Techniques

5
Example: Cascaded Switches with Random

Selections . 5-2
Six-Way Switching Component . 5-2
Five-Way Switching Component . 5-2

Example: Cascaded Switches with Round-Robin
Sequence . 5-4

Example: Compound Switching Logic 5-5

Using Logic

6
Role of Logic in SimEvents Models 6-2

Using Logic Blocks . 6-3
Example: Using Servers in Shifts . 6-4
Example: Choosing the Shortest Queue 6-8

Regulating Arrivals Using Gates

7
Role of Gates in SimEvents Models 7-2

Accessing Gate Blocks . 7-3
Types of Gates . 7-3

Keeping a Gate Open Over a Time Interval 7-4
Example: Controlling Joint Availability of Two Servers . . . 7-4

Opening a Gate Instantaneously . 7-6

iv Contents

Example: Synchronizing Service Start Times with the
Clock . 7-6

Example: Opening a Gate Upon Entity Departures 7-7

Using Logical Combinations of Gates 7-9
Example: First Entity as a Special Case 7-10

Controlling Timing Using Subsystems

8
Timing Issues in SimEvents Models 8-2

Timing for the End of the Simulation 8-2
Timing for a Statistical Computation 8-3
Timing for Choosing a Port Using a Sequence 8-4

Role of Discrete Event Subsystems in SimEvents
Models . 8-7
Purpose of Discrete Event Subsystems 8-7
Processing Sequence for Events in Discrete Event

Subsystems . 8-8

Blocks Inside Discrete Event Subsystems 8-10

Working with Discrete Event Subsystem Blocks 8-11
Setting Up Signal-Based Discrete Event Subsystems 8-11
Signal-Based Events That Control Discrete Event

Subsystems . 8-14

Examples Using Discrete Event Subsystem Blocks 8-16
Example: Adding the Lengths of Two Queues 8-16
Example: Normalizing a Statistic to Use for Routing 8-17
Example: Using Event-Based Timing for a Statistical

Computation . 8-19
Example: Ending the Simulation Upon an Event 8-20
Example: Sending Unrepeated Data to the MATLAB

Workspace . 8-21
Example: Focusing on Events, Not Values 8-22
Example: Detecting Changes from Empty to Nonempty . . 8-23

v

Example: Logging Data About the First Entity on a
Path . 8-24

Creating Entity-Departure Subsystems 8-26
Accessing Blocks for Entity-Departure Subsystems 8-26
Setting Up Entity-Departure Subsystems 8-27

Examples Using Entity-Departure Subsystems 8-29
Example: Using Entity-Based Timing for Choosing a

Port . 8-29
Example: Performing a Computation on Selected Entity

Paths . 8-31

Using Function-Call Subsystems . 8-32
Use Cases for Function-Call Subsystems 8-32
Setting Up Function-Call Subsystems in SimEvents

Models . 8-32

Plotting Data

9
Choosing and Configuring Plotting Blocks 9-2

Sources of Data for Plotting . 9-2
Inserting and Connecting Scope Blocks 9-3
Connections Among Points in Plots 9-4
Varying Axis Limits Automatically 9-5
Examples Using Scope Blocks . 9-6

Plotting Window Features . 9-7

Using Plots for Troubleshooting . 9-8
Example: Plotting Entity Departures to Verify Timing . . . 9-8
Example: Plotting Event Counts to Find Roundoff Error . . 9-12

Comparison with Time-Based Plotting Tools 9-15

vi Contents

Using Statistics

10
Role of Statistics in Discrete-Event Simulation 10-2

Statistics for Data Analysis . 10-2
Statistics for Run-Time Control . 10-3

Accessing Statistics from SimEvents Blocks 10-4
Accessing Statistics Throughout the Simulation 10-4
Accessing Statistics When Stopping or Pausing

Simulation . 10-6

Using Timers . 10-7
Basic Example Using Timer Blocks 10-7
Basic Procedure for Using Timer Blocks 10-8
Timing Multiple Entity Paths with One Timer 10-9
Restarting a Timer . 10-10
Timing Multiple Processes Independently 10-12

Running a Series of Simulations . 10-13
Creating Independent Replications 10-13
Running Simulations from MATLAB 10-15
Regulating the Simulation Length . 10-20

Troubleshooting Discrete-Event Simulations

11
Viewing the Event Calendar . 11-2

Turning Event Logging On . 11-2
Logging the Processing of Events . 11-3
Logging the Scheduling of Events . 11-4
Logging the List of Events . 11-4
Example: Event Logging . 11-6

Viewing Entity Locations . 11-8
Turning Entity Logging On . 11-8
Interpreting Entity Logging Messages 11-8
Example: Entity Logging . 11-9

vii

Common Problems in SimEvents Models 11-12
Unexpectedly Simultaneous Events 11-13
Unexpectedly Nonsimultaneous Events 11-13
Unexpected Processing Sequence for Simultaneous

Events . 11-16
Time-Based Block Not Recognizing Certain Trigger

Edges . 11-17
Incorrect Timing of Signals . 11-17
Unexpected Use of Old Value of Signal 11-19
Effect of Initial Condition on Signal Loops 11-23
Loops in Entity Paths Without Storage Blocks 11-26
Unexpected Timing of Random Signal 11-29
Unexpected Correlation of Random Processes 11-31

Configuration Parameters for SimEvents Models 11-32

How SimEvents Works

12
Notifications and Queries Among Blocks 12-2

Querying Whether a Subsequent Block Can Accept an
Entity . 12-2

Notifying Blocks About Status Changes 12-3

Interleaved Operations of Storage and Nonstorage
Blocks . 12-4
Example: Sequence of Departures and Statistical

Updates . 12-5

Zero-Duration Values and Time-Based Blocks 12-10
Example: Using a #n Signal as a Trigger 12-11

Demonstration Models

13
Tutorial Demos . 13-2

viii Contents

Attributes: Data Within Entities . 13-2
Service Time From Attribute . 13-3
Specifying Service Time in Single Server 13-3
Specifying Service Time in Infinite Server Block 13-3
Single Server Block Versus Infinite Server Block 13-3
Start Timer and Read Timer Blocks 13-4
Release Gate: Value Change Versus Trigger 13-4
Input Switching Using Signal . 13-4
Output Switching Using Signal . 13-4
Path Combiner Versus Input Switch 13-5
Time-Driven and Event-Driven Addition 13-5
Counting Instantaneous Events . 13-6
Preload Queue with Entities . 13-6

Queuing Systems . 13-7
M/M/1 Queuing System . 13-7
M/D/1 Queuing System . 13-9
G/G/1 Queuing System and Little’s Law 13-10
Single Server Versus N-Server . 13-13
Single Queue Versus Multiple Queues 13-13
A Queuing System with Discouraged Arrivals 13-13
Prioritized Queuing Policy Comparison 13-15
Preemption Policy Comparison . 13-15

Application Demos . 13-16
Shared Access Communications Media 13-16
Dynamic Voltage Scaling Using Online Gradient

Estimation . 13-16
Comparison of Routing Policies . 13-19
F-14 Flight Control Over a Network 13-19
Selective-Repeat Automatic Repeat Request 13-19
Tank Filling Station . 13-20
Astable Multivibrator Circuit . 13-21

ix

Functions – Alphabetical List

14

Blocks – Categorical List

15
Generators . 15-2

Entity Generators . 15-2
Event Generators . 15-2
Signal Generators . 15-2

SimEvents Sinks . 15-3

Attributes . 15-4

Queues . 15-5

Servers . 15-6

Routing . 15-7

Gates . 15-8

SimEvents Ports and Subsystems 15-9

Timing . 15-10

Probes . 15-11

Event Translation . 15-12

x Contents

Blocks – Alphabetical List

16

Glossary

Examples

A
Attributes of Entities . A-2

Counting Entities . A-3

Working with Events . A-4

Queuing Systems . A-5

Working with Signals . A-6

Server States . A-7

Routing Entities . A-8

Gates . A-9

Discrete Event Subsystems . A-10

Troubleshooting . A-11

Timers . A-12

Statistics . A-13

xi

Index

xii Contents

1

Working with Entities

Generating Entities When Events
Occur (p. 1-2)

Using events to determine when to
generate an entity

Setting Attributes of Entities
(p. 1-11)

Attaching data to entities

Accessing Attributes of Entities
(p. 1-17)

Reading and using data attached to
entities

Counting Entities (p. 1-18) Counting entities per time instant
and across the simulation

Replicating Entities on Multiple
Paths (p. 1-22)

Creating copies of entities

1 Working with Entities

Generating Entities When Events Occur
The Event-Based Entity Generator block enables you to generate entities
in response to events that occur during the simulation. Event times and
the time intervals between pairs of successive entities are not necessarily
predictable in advance. This section describes the events that can cause entity
generation, in these topics:

• “Detecting Sample Time Hits” on page 1-2

• “Detecting Changes in Signal Values” on page 1-4

• “Detecting Edges in Trigger Signals” on page 1-5

• “Detecting Function Calls” on page 1-7

Generating entities when events occur might be appropriate if you want the
dynamics of your model to determine when to generate entities. For example,
if you want to generate an entity every time a Stateflow® chart transitions
from state A to state B, then you configure the Stateflow chart to output a
function call upon such a transition and configure the Event-Based Entity
Generator block to react to each function call by generating an entity. As
another example, if you want to generate an entity every time the length of a
queue changes, then you configure the queue to output a signal indicating the
queue length and configure the Event-Based Entity Generator block to react
to changes in that signal’s value by generating an entity.

Note To specify intergeneration times between pairs of successive entities,
use the Time-Based Entity Generator block as described in “Creating Entities
Using Intergeneration Times” in the Getting Started documentation.

Detecting Sample Time Hits
You can configure the Event-Based Entity Generator block so that it generates
entities in response to updates in a signal. More explicitly, whenever the
block producing that signal recomputes and outputs the signal value, the
Event-Based Entity Generator block generates an entity. The actual value
of the signal and the question of whether recomputing the value yields a
different result compared to the previous time step are irrelevant to the entity
generation process; only the time of the output is relevant.

1-2

Generating Entities When Events Occur

Configuring the Block to Detect Sample Time Hits
To use this method for generating entities, set the Event-Based Entity
Generator block’s Generate entities upon parameter to Sample time hit
from port ts. This causes the block to have an input signal port labeled ts.
During the simulation, the Event-Based Entity Generator block generates
entities in response to updates in the signal connected to this ts port.

Sample Use Cases
Here are a few scenarios that illustrate this method for generating entities:

• The ts signal is the output of a block with an explicit Sample time
parameter. Regardless of the value of the ts signal, the Event-Based Entity
Generator block generates an entity periodically, according to the sample
time of the driving block.

Compared to using a Time-Based Entity Generator block with
Distribution set to Constant, this event-based approach is a more direct
way to synchronize entity generation events with sample time hits and
avoid possible roundoff errors. Below is an example.

For other examples that use this entity-generation method to effect desired
simultaneity of events, see “Example: Race Conditions at a Switch” on
page 2-23 and “Example: Plotting Event Counts to Find Roundoff Error”
on page 9-12.

• The ts signal is the output of a triggered subsystem whose Propagate
execution context across subsystem boundary parameter is selected.
Whenever Simulink® calls the subsystem and recomputes the output, the
Event-Based Entity Generator block generates an entity.

1-3

1 Working with Entities

Note Do not put the Event-Based Entity Generator block inside a
triggered subsystem. Like other blocks that possess entity ports, the
Event-Based Entity Generator block is not valid inside a triggered
subsystem. See also “Detecting Edges in Trigger Signals” on page 1-5.

• The ts signal is a statistical output signal from a SimEvents block.
Whenever the block recomputes and outputs the statistic, the Event-Based
Entity Generator block generates an entity.

Detecting Changes in Signal Values
You can configure the Event-Based Entity Generator block so that it generates
entities in response to numerical changes in a signal. This can be useful if the
changes in the signal’s value have some significance in your simulation; for
example, a signal representing the length of a queue changes whenever an
entity arrives at or departs from the queue.

Configuring the Block to Detect Value Changes
To use this method for generating entities, set the Event-Based Entity
Generator block’s Generate entities upon parameter to Change in signal
from port vc. This causes the block to have an input signal port labeled
vc. Also, set the Type of value change parameter to indicate whether the
block should generate an entity whenever the signal connected to this vc port
increases, decreases, or exhibits either type of change.

Sample Use Cases
Typically, the vc signal is one that you expect to change values at only a
discrete set of times during the simulation. In some applications, the signal
is discrete valued. Here are a few scenarios that illustrate this method for
generating entities:

• The vc signal is an integer-valued statistical output signal from a
SimEvents block. For example, the statistic could be the number of entities
in a queue (shown below) or the number of entities that have departed from
the block. Whenever the statistic changes values, the Event-Based Entity
Generator block generates an entity.

1-4

Generating Entities When Events Occur

• The vc signal is the output of a discrete-valued block, such as Relational
Operator, Compare to Zero, or Direct Lookup Table (n-D). Whenever the
logical value or the lookup table value changes, the Event-Based Entity
Generator block generates an entity.

Detecting Edges in Trigger Signals
You can configure the Event-Based Entity Generator block so that it generates
entities in response to rising or falling edges in a signal. This can be useful
if the signal’s zero crossings have some significance in your simulation; for
example, a signal representing acceleration crosses zero whenever the velocity
reverses direction. A signal whose rising and falling edges are used to invoke
a behavior during the simulation is called a trigger signal.

1-5

1 Working with Entities

A rising edge is an increase from a negative or zero value to a positive value (or
zero if the initial value is negative). A falling edge is a decrease from a positive
or a zero value to a negative value (or zero if the initial value is positive).

Configuring the Block to Detect Edges
To use this method for generating entities, set the Event-Based Entity
Generator block’s Generate entities upon parameter to Trigger from
port tr. This causes the block to have an input signal port labeled tr.
Also, set the Trigger type parameter to indicate whether the block should
generate an entity whenever the signal connected to this tr port has a rising
edge, a falling edge, or either type of edge.

Note Do not put the Event-Based Entity Generator block inside a triggered
subsystem, but rather attach the trigger signal directly to the block’s tr port.
Like other blocks that possess entity ports, the Event-Based Entity Generator
block is not valid inside a triggered subsystem.

Sample Use Cases
Here are a few scenarios that illustrate this method for generating entities:

• The tr signal arises from the time-driven dynamics of your system.
Whenever the signal crosses zero, the Event-Based Entity Generator block
generates an entity.

• The tr signal is a real-valued statistical output signal from a SimEvents
block, plus a negative constant. Whenever the statistic crosses a threshold
that is the absolute value of the constant, the sum crosses zero and the
Event-Based Entity Generator block generates an entity.

In the figure below, the Event-Based Entity Generator block generates a
new entity each time the queue’s average waiting time signal crosses the
threshold of 5 seconds.

1-6

Generating Entities When Events Occur

Top-Level Model

The subsystem between the queue and the entity generator, shown below,
adds -5 to the average waiting time value to translate the threshold
from 5 to 0. To understand why this computation occurs in a subsystem
rather than at the top level of the model hierarchy, see “Timing Issues
in SimEvents Models” on page 8-2.

Subsystem Contents

Detecting Function Calls
A function-call signal is a special type of signal that directly defines a time
instant and whose typical purpose is to call a subsystem or other functional
operation at that instant. A function-call signal can come from an Entity
Departure Event to Function-Call Event block, a Signal-Based Event to
Function-Call Event block, a Function-Call Generator block, or a Stateflow
block.

You can configure the Event-Based Entity Generator block so that it generates
entities in response to a function call. This can be useful for generating
new entities based on the behavior of existing entities in the simulation,

1-7

1 Working with Entities

generating multiple new entities simultaneously, or incorporating Stateflow
dynamics into your SimEvents model.

Configuring the Block to Detect Function Calls
To use this method for generating entities, set the Event-Based Entity
Generator block’s Generate entities upon parameter to Function call
from port fcn. This causes the block to have an input signal port labeled
fcn. During the simulation, the Event-Based Entity Generator block
generates entities in response to function calls in the signal connected to
this fcn port.

Note Do not put the Event-Based Entity Generator block inside a
function-call subsystem, but rather attach the function-call signal directly
to the block’s fcn port. Like other blocks that possess entity ports, the
Event-Based Entity Generator block is not valid inside a function-call
subsystem.

Sample Use Cases
Here are a few scenarios that illustrate this method for generating entities:

• An Entity Departure Event to Function-Call Event block issues a function
call whenever an entity departs from it. Whenever this occurs, the
Event-Based Entity Generator block generates an entity.

In the figure below, the Event-Based Entity Generator block generates a
new entity each time an entity departs from the queue (or, equivalently,
each time an entity arrives at the server).

1-8

Generating Entities When Events Occur

• A Signal-Based Event to Function-Call Event block with ts and e1 input
ports issues a function call whenever the ts signal is updated while the
e1 signal is positive. During time intervals when e1 is positive, the
Event-Based Entity Generator block can generate entities, where the
specific times depend on updates of the ts signal. When e1 is zero or
negative, the Event-Based Entity Generator block generates no entities,
even if the ts signal has an update. The e1 signal provides a way to enable
and disable entity generation.

In the figure below, the Event-Based Entity Generator block generates
entities at integer-valued times when the queue is nonempty.

• A Function-Call Generator block issues one or more function calls
periodically during the simulation. Each function call causes the
Event-Based Entity Generator block to generate an entity.

In the figure below, the two Function-Call Generator blocks share the same
sample time of 1 second, but the top block generates one function call at a
time, while the bottom one generates three simultaneous function calls at
a time. The icon changes to reflect the multiplicity of function calls. As a
result, the top Event-Based Entity Generator block generates one entity
each second, while the bottom one generates three entities simultaneously
each second.

1-9

1 Working with Entities

Note If you generate multiple entities simultaneously, then consider
the appropriateness of other blocks in the model. For example, if three
simultaneously generated entities advance to a single server, then you
might want to insert a queue between the generator and the server so that
entities (in particular, the second and third entities) have a place to wait
for the server to become available.

• A Stateflow block issues a function-call output whenever the state takes a
particular transition, as defined in the chart. Each function call causes the
Event-Based Entity Generator block to generate an entity.

1-10

Setting Attributes of Entities

Setting Attributes of Entities
You can attach data to an entity using one or more attributes of the entity.
Each attribute has a name and a numeric scalar value. For example,
if your entities represent a message that you are transmitting across a
communication network, you might assign data called length that indicates
the length of each particular message. You can read or change the values
of attributes during the simulation.

The Set Attribute block assigns up to four attributes on each arriving entity.
Assignments can create new attributes or change the values of existing
attributes. Attribute values can come from information you enter in the
block’s dialog box or from signals. To set more than four attributes on an
entity, connect multiple Set Attribute blocks in series.

Other blocks can set particular kinds of attributes:

• The Entity Departure Counter block can set an attribute whose value is
the entity count.

• The Single Server block can set an attribute whose value is the residual
service time for a preempted entity. For more information, see “Preempting
an Entity in a Server” on page 4-10.

To learn how to query entities for attribute values, see “Accessing Attributes
of Entities” on page 1-17.

1-11

1 Working with Entities

Example: Setting Attributes
The model below illustrates different ways of assigning attribute values to
entities.

After each entity departs from the Set Attribute block, it possesses the
attributes listed in the table.

Attribute
Name

Attribute Value Method for Setting Attribute Value

Count N, for the
Nth entity
departing from
the Time-Based
Entity Generator
block

In Entity Departure Counter dialog box:

Write count to attribute = On
Attribute name = Count
Actually, the entity generator creates the Count attribute
with a value of 0. The Entity Departure Counter block
sets the attribute value according to the entity count.

Type Constant value of
3

A1 tab of Set Attribute dialog box:

Attribute assignment = Specify via dialog
Attribute name = Type
Value = 3

Length Value of signal
at output of
Event-Based
Random Number
block

Event-Based Random Number block connected to
Set Attribute block in which A2 tab of dialog box is
configured as follows:

Attribute assignment = From signal port A2
Attribute name = Length

1-12

Setting Attributes of Entities

In this example, each Attribute Scope block plots values of a different
attribute over time. Notice from the images below that the Count plot is a
stairstep graph, the Type plot is a constant, and the Length plot looks random.

1-13

1 Working with Entities

When to Use Attributes
In some modeling situations, it is important to attach data to an entity instead
of merely creating the data as the content of a signal. This section discusses
the importance of considering not only the topology of your block diagrams,
but also the timing of data signals appearing in SimEvents models.

Example Reusing Data
Consider a queue-server model with varying service times, where you want
to plot the service time against entity count for each entity that departs
from the server. A signal specifies the service time to use for each entity.
Although connecting the same signal to the Signal Scope block appears
correct topologically, the timing in such an arrangement is incorrect because
of the delay at the server. That is, the signal has one value when a given
entity arrives at the server and another value when the same entity arrives
at the scope.

A correct way to implement such an example involves attaching the service
time to each entity using an attribute and retrieving the attribute value from
each entity upon its departure from the server. That way, the scope receives
the service time associated with each entity, regardless of the delay between
arrival times at the server and the scope.

1-14

Setting Attributes of Entities

Example Manipulating Data
To manipulate the value of an attribute that you originally set using a signal,
follow these rules:

• Query the value and then manipulate it, instead of creating a branch line
from the signal and manipulating that. To query an entity for the value of
an attribute, use the Get Attribute block.

• Perform the manipulation in a discrete event subsystem, as described in
Chapter 8, “Controlling Timing Using Subsystems”. This ensures correct
timing of the manipulation of the event-based signal that represents the
attribute value.

• Insert a storage block with a delay of zero after the Get Attribute block, if
you use the manipulated attribute value in a subsequent block on the same
entity path. This ensures that the subsequent block reads the up-to-date
results of the manipulation upon the entity’s arrival. For details, see
“Interleaved Operations of Storage and Nonstorage Blocks” on page 12-4.

1-15

1 Working with Entities

The example below illustrates the use of the Get Attribute block to query an
entity for its attribute value, the use of the Discrete Event Subsystem block to
contain the manipulation of the attribute value, and the insertion of a Single
Server block between the Get Attribute and Set Attribute blocks.

1-16

Accessing Attributes of Entities

Accessing Attributes of Entities
The section “Setting Attributes of Entities” on page 1-11 described how to
use the Set Attribute block to attach data to entities near the time that you
generate the entities. You can also use that block to change the value of an
attribute at any point in an entity path.

To access data that has been attached to an entity, use one of these methods:

• Send the entity to a Get Attribute block. Each instance of the Get Attribute
block can retrieve up to four attributes on each arriving entity and create
signals with the attribute values.

For example, see the subsystem of the model described in “Adding
Event-Based Behavior” in the Getting Started documentation.

• Send the entity to an Attribute Scope block and set the block’s Y attribute
name parameter to the name of the attribute. Alternatively, send the
entity to an X-Y Attribute Scope block and set the block’s X attribute
name and Y attribute name parameters to the names of two attributes.

For example, see Chapter 9, “Plotting Data”.

• Name the attribute in the dialog box of a block that supports the use
of attribute values for block parameters. For example, you can use an
attribute value to specify the service time in the Single Server block or the
selected entity output port in the Output Switch block.

For example, see “Example: Using an Attribute to Select an Output Port”
in the Getting Started documentation.

1-17

1 Working with Entities

Counting Entities
Counting entities can be useful for statistical measures and for understanding
a simulation. This section describes techniques for counting entities in
different ways, in these topics:

• “Counting Departures Across the Simulation” on page 1-18

• “Counting Departures per Time Instant” on page 1-18

• “Resetting a Counter Upon an Event” on page 1-20

• “Associating Each Entity with Its Index” on page 1-21

For troubleshooting purposes, see also “Viewing Entity Locations” on page
11-8.

Counting Departures Across the Simulation
Use the #d or #a output signal from a block to learn how many entities have
departed from (or arrived at) a particular block and when their departures
occurred. This method of counting is cumulative throughout the simulation.
These examples use the #d output signal to count departures:

• “Building a Simple Discrete-Event Model” in the Getting Started
documentation

• “Example: First Entity as a Special Case” on page 7-10

• “Stopping Based on Entity Count” on page 10-21

Counting Departures per Time Instant
In some cases, you want to visualize how many entities have departed from a
particular block and when their departures occurred, but you want to restart
the counter at each time instant. This can be useful for

• Detecting simultaneous departures

• Focusing on the departure times without needing to accommodate large
counts (for example, in a plot with a large range of axis values)

1-18

Counting Entities

Use the Instantaneous Entity Counting Scope to plot the number of entities
that have arrived at each time instant. The block restarts the count from 1
when the time changes. As a result, the count is cumulative for a given time
instant but not cumulative across the entire simulation.

Example: Counting Simultaneous Departures from a Server
In the example below, the Infinite Server block sometimes completes service
on multiple entities simultaneously. The Instantaneous Entity Counting
Scope indicates how many entities departed from the server at each fixed
time instant during the simulation.

1-19

1 Working with Entities

Resetting a Counter Upon an Event
Use the Entity Departure Counter block with Reset counter upon set
to Change in signal from port vc or Trigger from port tr to count
entity departures via a resettable counter. For details on this feature, see the
reference page for the Entity Departure Counter block.

Example: Resetting a Counter After a Transient Period
For example, the model below counts entity departures from a queuing system
but resets the counter after an initial transient period.

1-20

Counting Entities

Associating Each Entity with Its Index
Use the Entity Departure Counter block with Write count to attribute set
to On to associate an entity count with the entities that use a particular entity
path. The Nth entity departing from the Entity Departure Counter block
has an attribute value of n.

For an example, see “Example: Setting Attributes” on page 1-12.

For an example that illustrates when using the Entity Departure Counter
block is more straightforward than storing the #d output signal in an
attribute using the Set Attribute block, see “Example: Sequence of Departures
and Statistical Updates” on page 12-5.

1-21

1 Working with Entities

Replicating Entities on Multiple Paths
You can distribute copies of an entity on multiple entity paths using the
Replicate block. Replicating entities might be a requirement of the situation
you are modeling or it might be merely a convenient modeling construct. One
scenario in which you might replicate entities is when copies of messages in
a multicasting communication system advance to multiple transmitters or
multiple recipients, as shown in the fragment below.

Alternatively, copies of computer jobs might advance to multiple computers in
a cluster so that the jobs can be processed in parallel on different platforms.

Unlike the Output Switch block, the Replicate block has departures at all of
its entity output ports, not just a single selected entity output port.

Note If your model routes the replicated entities such that they use a
common entity path, then be careful to avoid blockages. For example,
connecting all ports of a Replicate block, Path Combiner block, and Single
Server block in that sequence can create a blockage because the server can
accommodate at most one of the replicated entities at a time. One way to
avoid this problem is to insert a server block on each path between the
Replicate and Path Combiner blocks. Another approach is to follow the Path
Combiner block with a gate and a queue, where the gate is open only if the
queue has enough capacity for all the replicated entities.

1-22

Replicating Entities on Multiple Paths

Departure Port Precedence
Each time the Replicate block replicates an entity, the copies depart in a
sequence whose start is determined by the Departure port precedence
parameter. Although all copies depart at the same time instant, the sequence
might be significant in some modeling situations. For details, see the
reference page for the Replicate block.

1-23

1 Working with Entities

1-24

2

Working with Events

Supported Events in SimEvents
Models (p. 2-2)

List and discussion of event types

Using the Event Calendar (p. 2-9) How the event calendar determines
when and how SimEvents blocks act

Observing Events (p. 2-28) Techniques for determining when
events occur

Generating Function-Call Events
(p. 2-34)

Generating events in an event-based
or time-based manner

Manipulating Events (p. 2-37) Translating, combining, prioritizing,
and delaying events

2 Working with Events

Supported Events in SimEvents Models
An event is an instantaneous discrete incident that changes a state variable,
an output, and/or the occurrence of other events. This section lists the
supported events in SimEvents models and discusses some types of events in
greater detail. The topics are

• “Types of Supported Events” on page 2-2

• “Signal-Based Events” on page 2-3

• “Function Calls” on page 2-7

Types of Supported Events
SimEvents supports the events listed below.

Event Description

Sample time hit Update in the value of a signal that is connected
to a block configured to react to signal updates

Value change Change in the value of a signal connected to a
block that is configured to react to relevant value
changes

Trigger Rising or falling edge of a signal connected to a
block that is configured to react to relevant trigger
edges

Function call Discrete invocation request carried from block
to block by a special signal called a function-call
signal

Entity generation Creation of an entity

Entity destruction Arrival of an entity at a block that has no entity
output port

Entity advancement Departure of an entity from one block and arrival
at another block

Service completion Completion of service on an entity in a server

Preemption Replacement of an entity in a server by a
higher-priority entity

2-2

Supported Events in SimEvents Models

Event Description

Counter reset Reinitialization of the counter in the Entity
Departure Counter block

Gate opening or closing Change in the state of the gate represented by the
Enabled Gate or Release Gate block

Port selection Selection of an entity input port in the Input
Switch block or an entity output port in the
Output Switch block

Memory writing Writing of memory in the Signal Latch block

Memory reading Reading of memory in the Signal Latch block

Signal-Based Events
Sample time hits, value changes, and triggers are collectively called
signal-based events. Signal-based events can occur with respect to time-based
or event-based signals. Signal-based events provide a mechanism for a block
to respond to selected state changes in a signal connected to the block. The
kind of state change to which the block responds determines the specific type
of signal-based event.

When comparing the types of signal-based events, note that

• The updated value that results in a sample time hit could be the same as or
different from the previous value of the signal.

• Event-based signals do not necessarily undergo an update or initialization
at the beginning of the simulation.

• Every change in a signal value is also an update in that signal’s value.
However, the opposite is not true because an update that merely reconfirms
the same value is not a change in the value.

• Every rising or falling edge is also a change in the value of the signal.
However, the opposite is not true because a change from one positive value
to another (or from one negative value to another) is not a rising or falling
edge.

2-3

2 Working with Events

• Triggers and value changes can be rising or falling. You configure a block
to determine whether the block considers rising, falling, or either type
to be a relevant occurrence.

• Blocks in the Simulink libraries are more restrictive than blocks in the
SimEvents libraries regarding trigger edges that rise or fall from zero.
Simulink blocks in discrete-time systems do not consider a change from
zero to be a trigger edge unless the signal remained at zero for more than
one time step; see “Triggered Subsystems”. SimEvents blocks configured
with tr ports consider any change from zero to a nonzero number to be a
trigger edge.

Example: Comparing Types of Signal-Based Events
Consider the signal representing the number of entities stored in a FIFO
queue. This is the #n output signal from the FIFO Queue block in the model
below. The #n signal is connected to the Event-Based Entity Generator block,
which reacts to different types of signal-based events. Parameters in its
dialog box determine whether the block has a ts, vc, or tr input port, as well
as the types of events to which the block reacts.

The following figures use a staircase plot to show the values of the #n signal
and stem plots to indicate when signal-based events occur at different signal
input ports (ts, vc, or tr) of the Event-Based Entity Generator block.

2-4

Supported Events in SimEvents Models

Sample Time Hits of #n Signal Connected to ts Port

2-5

2 Working with Events

Value Changes of #n Signal Connected to vc Port

2-6

Supported Events in SimEvents Models

Trigger Edges of #n Signal Connected to tr Port

Function Calls
Function calls are discrete invocation requests carried from block to block by
a special signal called a function-call signal. A function-call signal appears
as a dashed line, not a solid line. A function-call signal carries a function
call at discrete times during the simulation and does not have a defined
value at other times. A function-call signal is capable of carrying multiple
function calls at the same value of the simulation clock, representing multiple
simultaneous events.

In SimEvents models, function calls are the recommended way to make
Stateflow blocks and blocks in the Simulink libraries respond to asynchronous
state changes.

Function calls and signal-based events are often interchangeable in
their ability to elicit reactions from various SimEvents blocks, such as
the Event-Based Entity Generator block and the Signal-Based Event to
Function-Call Event block.

2-7

2 Working with Events

Function-call signals can be combined, as described in “Creating a Union of
Multiple Events” on page 2-38.

2-8

Using the Event Calendar

Using the Event Calendar
In a discrete-event simulation, state variables change instantaneously at
discrete times in response to events. An event is an instantaneous incident
that changes a state variable, an output, and/or the occurrence of future
events. The event calendar lists selected upcoming events. The event calendar
provides you with flexibility over the sequencing of events that occur at the
same value of the simulation clock.

This section discusses which events appear on the event calendar and the
processing sequence of simultaneous events. The topics are

• “Events That Appear on the Event Calendar” on page 2-9

• “Example: Event Calendar for a Queue-Server Model” on page 2-11

• “Setting Event Priorities” on page 2-19

• “Processing Sequence for Simultaneous Events” on page 2-21

• “Example: Race Conditions at a Switch” on page 2-23

To learn how to display event information in the MATLAB® Command
Window, see “Viewing the Event Calendar” on page 11-2.

Events That Appear on the Event Calendar
The table below indicates which events appear or might appear on the event
calendar. In some cases, you have a choice.

Event On Event
Calendar

How to Cause Event to Appear
on Event Calendar

Sample time hit

Value change

Trigger

Never

2-9

2 Working with Events

Event On Event
Calendar

How to Cause Event to Appear
on Event Calendar

Function call Sometimes Select Specify event priority..., if
present, in the dialog box of the block
that generates the function call. If
the dialog box has no such option,
then the function call is not on the
event calendar.

Entity generation Sometimes Use the Time-Based Entity
Generator block, or select Specify
event priority... in the Event-Based
Entity Generator block’s dialog box.

Entity destruction Never

Entity
advancement

Never

Service completion Always

Preemption Never

Counter reset

Gate opening or
closing

Port selection

Sometimes Select Specify event priority..., if
present, in the block’s dialog box.

Memory writing Sometimes Select Specify event priority... on
the Write tab of the block’s dialog
box.

Memory reading Sometimes Select Specify event priority... on
the Read tab of the block’s dialog
box.

If an event does not appear on the event calendar, then the application
arbitrarily decides when to process the event relative to other events occurring
simultaneously, that is, at the same value of the simulation clock. When
multiple unrelated events occur simultaneously, causality considerations
alone do not necessarily determine a unique correct sequence.

2-10

Using the Event Calendar

Choosing Whether to Put Events on the Event Calendar
When you use blocks whose dialog boxes contain an option labeled Specify
event priority..., your choice determines whether particular events appear
on the event calendar. When making these choices, ask these questions about
your model:

• How likely are unrelated simultaneous events?

Some models experience many state changes at deterministic intervals, so
the probability of unrelated simultaneous events is considerable. Other
models, such as high-level abstractions that omit details, experience
state changes mostly at random times, so the probability of unrelated
simultaneous events is small.

• Does the processing sequence of simultaneous events affect your simulation
results, qualitatively or quantitatively?

If unrelated simultaneous events seem likely to occur and if their sequence
can alter your simulation results, then you should use the event calendar to
control the sequencing of such simultaneous events. Select Specify event
priority... in those blocks that you expect to produce events simultaneously.
Then use event priorities as described in “Setting Event Priorities” on page
2-19 to determine a sequence that meets your simulation needs. Simultaneous
events having distinct event priorities are processed in ascending order of the
event priority values.

If you do not need such control, then your simulation might run more quickly
if you clear the Specify event priority... check box.

Example: Event Calendar for a Queue-Server Model
To see how the event calendar drives the simulation of a simple event-based
model, consider the queue-server model depicted below.

2-11

2 Working with Events

Assume that the blocks are configured so that

• The Time-Based Entity Generator block generates an entity at T = 0.9, 1.7,
3.8, 3.9, and 6.

• The queue has infinite capacity.

• The server uses random service times that are uniformly distributed
between 0.5 and 2.5 seconds.

The sections below indicate how the event calendar and the system’s states
change during the simulation.

Start of Simulation
When the simulation starts, the queue and server are empty. The entity
generator schedules an event for T = 0.9. The event calendar looks like the
table below.

Time of
Event (s)

Type of Event

0.9 Time-Based Entity Generator block generates an entity.

Generation of First Entity
At T = 0.9,

2-12

Using the Event Calendar

• The entity generator generates an entity and attempts to output it.

• The queue is empty, so the entity advances from the entity generator to
the queue.

• The newly generated entity is the only one in the queue, so the queue
attempts to output the entity. It queries the server to determine whether
the server can accept the entity.

• The server is empty, so the entity advances from the queue to the server.

• The server’s entity input port becomes temporarily unavailable to future
entities.

• The server schedules an event that indicates when the entity’s service time
is completed. Suppose the (stochastic) service time turns out to be 1.3 in
this case. This means that the duration of service is 1.3 seconds, so service
is complete at T = 2.2.

• The entity generator schedules its next entity-generation event, at T = 1.7.

In the schematic below, the circled notation “e1” depicts the first entity and
the dashed arrow is meant to indicate that this entity advances from the
entity generator through the queue to the server.

��

The event calendar looks like this.

2-13

2 Working with Events

Time of
Event (s)

Event Description

1.7 Time-Based Entity Generator block generates second entity.

2.2 Single Server block completes service on the first entity.

Generation of Second Entity
At T = 1.7,

• The entity generator generates an entity and attempts to output it.

• The queue is empty, so the entity advances from the entity generator to
the queue.

• The newly generated entity is the only one in the queue, so the queue
attempts to output the entity. However, the server’s entity input port is
unavailable, so the entity stays in the queue. The queue’s entity output
port is said to be blocked because an entity has tried and failed to depart
via this port.

• The entity generator schedules its next entity-generation event, at T = 3.8.

�� ��

2-14

Using the Event Calendar

Time of
Event (s)

Event Description

2.2 Single Server block completes service on the first entity.

3.8 Time-Based Entity Generator block generates the third entity.

Completion of Service Time
At T = 2.2,

• The server finishes serving its entity and attempts to output it. The server
queries the next block to determine whether it can accept the entity.

• The sink block accepts all entities by definition, so the entity advances
from the server to the sink.

• The server’s entity input port becomes available.

• The queue is now able to output the second entity to the server. As a result,
the queue becomes empty and the server becomes busy again.

• The server’s entity input port becomes temporarily unavailable to future
entities.

• The server schedules an event that indicates when the second entity’s
service time is completed. Suppose the service time turns out to be 2.0
in this case.

Note The server’s entity input port started this time instant in the
unavailable state, became available (when the first entity departed from the
server), and then became unavailable once again (when the second entity
arrived at the server). It is not uncommon for a state to change more than
once in the same time instant.

2-15

2 Working with Events

�� ��

Time of
Event (s)

Event Description

3.8 Time-Based Entity Generator block generates the third entity.

4.2 Single Server block completes service on the second entity.

Generation of Third Entity
At T = 3.8,

• The entity generator generates an entity and attempts to output it.

• The queue is empty, so the entity advances from the entity generator to
the queue.

• The newly generated entity is the only one in the queue, so the queue
attempts to output the entity. However, the server’s entity input port is
unavailable, so the entity stays in the queue.

• The entity generator schedules its next entity-generation event, at T = 3.9.

2-16

Using the Event Calendar

������

Time of
Event (s)

Event Description

3.9 Time-Based Entity Generator block generates the fourth entity.

4.2 Single Server block completes service on the second entity.

Generation of Fourth Entity
At T = 3.9,

• The entity generator generates an entity and attempts to output it.

• The queue is not full, so the entity advances from the entity generator
to the queue.

• The server’s entity input port is still unavailable, so the queue cannot
output an entity. The queue length is currently two.

• The entity generator schedules its next entity-generation event, at T = 6.

2-17

2 Working with Events

��������

Time of
Event (s)

Event Description

4.2 Single Server block completes service on the second entity.

6 Time-Based Entity Generator block generates the fifth entity.

Completion of Service Time
At T = 4.2,

• The server finishes serving its entity and attempts to output it.

• The sink block accepts all entities by definition, so the entity advances
from the server to the sink.

• The server’s entity input port becomes available, so the queue’s entity
output port becomes unblocked. The queue is now able to output the third
entity to the server. As a result, the queue length becomes one, and the
server becomes busy.

• The server’s entity input port becomes temporarily unavailable to future
entities.

• The server schedules an event that indicates when the entity’s service time
is completed. Suppose the service time turns out to be 0.7 in this case.

2-18

Using the Event Calendar

• The queue attempts to output the fourth entity. However, the server’s
entity input port is unavailable, so this entity stays in the queue. The
queue’s entity output port becomes blocked.

Note The queue’s entity output port started this time instant in the blocked
state, became unblocked (when it sensed that the server’s entity input port
became available), and then became blocked once again (when the server
began serving the third entity).

��������

Time of
Event (s)

Event Description

4.9 Single Server block completes service on the third entity.

6 Time-Based Entity Generator block generates the fifth entity

Setting Event Priorities
If the event calendar contains two or more events that are scheduled for the
same time, then you can assign event priorities to influence the processing
sequence of the events. Simultaneous events having distinct event priorities
are processed in ascending order of the event priority values. To assign event
priorities, use this procedure:

2-19

2 Working with Events

1 Find the block that produces the event you want to prioritize. For example,
it might be an entity generator, a server, a gate, a counter, or a switch.

2 If the block’s dialog box has an option whose name starts with Specify
event priority, then select this option. A parameter called Event
priority appears.

3 Set the Event priority or similarly named parameter to a positive integer.

Events that are not on the event calendar have no event priority. You
cannot vary, or necessarily predict, the processing sequence of unrelated
simultaneous events unless all of them appear on the event calendar.

For examples that show the effect of changing event priorities, see “Example:
Race Conditions at a Switch” on page 2-23 and the Event Priorities demo.

Events with Equal Priorities
If simultaneous events on the event calendar have equal event priorities, then
the application arbitrarily or randomly determines the processing sequence,
depending on a modelwide configuration parameter. To access this parameter,
use this procedure:

1 Select Simulation > Configuration Parameters from the model window.
This opens the Configuration Parameters dialog box.

2 In the left pane, select SimEvents.

3 In the right pane, set Execution order of simultaneous events to either
Randomized or Arbitrary.

• If you select Arbitrary, the application uses an internal algorithm to
determine the processing sequence for events on the event calendar that
share the same time and same priority.

• If you select Randomized, the application randomly determines the
processing sequence. All possible sequences have equal probability. The
Seed for event randomization parameter is the initial seed of the
random number generator; for a given seed, the generator’s output is
repeatable.

2-20

Using the Event Calendar

The processing sequence might be different from the sequence in which the
events were scheduled on the event calendar.

Processing Sequence for Simultaneous Events
Although simultaneous events occur at the same value of the simulation
clock, the application processes them sequentially. This section describes the
sequence of processing when the simultaneous events are unrelated, that is,
have no causal relationship to each other. Depending on the event types and
on how you have designed your model, the application might determine the
processing sequence

• Explicitly according to the event priority values you set. Simultaneous
events having distinct event priorities are processed in ascending order
of the event priority values.

• Randomly, where your choice of a seed for the random number generator
provides repeatability

• Arbitrarily, using an internal algorithm

The figure below indicates when each kind of determination is in effect, under
the assumption that two events with no causal relationship to each other
occur at the same value of the simulation clock. The abbreviation Execution
order... refers to the Execution order of simultaneous events parameter
on the SimEvents tab of the model’s Configuration Parameters dialog box.
See “Events with Equal Priorities” on page 2-20 for details.

2-21

2 Working with Events

����������	�
��

���

�������

�����
�
����
�������
���������

������

�����
��������

�����������������

���������
������	��
�����

��
������

����
�
	�
��

����
�������

��
��

�����
�
��������
�����
�

������	��
����������

��

��

�

�
 �
���������	
�
��
����
����

��������	�

�

��

When the sequence is arbitrary, you should not make any assumptions about
the sequence or its repeatability.

Choosing an Approach for Simultaneous Events
Here are some examples of situations in which you might want to use different
modeling approaches:

• You want the simulation to run as fast as possible and you know that the
specific processing sequence for unrelated simultaneous events has little
or no effect on your simulation results. In this case, you don’t vary any
priority-related parameters from their default values.

2-22

Using the Event Calendar

• You need to control the processing sequence for a particular set of events
that might occur simultaneously. In this case, you put the events on the
event calendar and choose appropriate priority values.

For example, suppose your model includes two single servers, each followed
by an enabled gate, and suppose that you want to make a gate-opening
event occur before a service completion event whenever the two events
occur simultaneously. In this case, configure the Enabled Gate blocks by
selecting Specify event priority for gate opening and closing and
specifying Event priority values that are smaller numbers than the
Service completion event priority values in the Single Server blocks.

- If you also need to have one service completion occur before the other,
then make the two Service completion event priority values distinct.
You would see the effects if the gates were followed by a Path Combiner
block and a FIFO Queue block, for example.

- If you want to randomly determine which service completion occurs first
if they are scheduled to occur at the same value of the simulation clock,
then make the two Service completion event priority values equal
and set Execution order of simultaneous events to Randomized in
the model’s Configuration Parameters dialog box.

Example: Race Conditions at a Switch
This example shows how you can vary the processing sequence for
simultaneous events.

2-23

2 Working with Events

At T=1, 2, 3,... the following events occur, not necessarily in this sequence:

• One or both entity generators generate an entity.

• The Repeating Sequence Stair block changes its value from 1 to 2 or vice
versa, which causes the Input Switch block to select a different entity
input port.

Both entity generators are configured so that if a generated entity cannot
depart immediately, the generator holds the entity and temporarily suspends
the generation of additional entities.

In the model, the two Set Attribute blocks assign a Source attribute to each
entity, where the attribute value is 1 or 2 depending on which entity generator
generated the entity. The Attribute Scope block plots the Source attribute
values to indicate the source of each entity that departs from the switch.

Selecting a Port First
Suppose the model is configured so that the two entity generators and the
switch have the explicit event priorities shown below.

Event Type Event Priority

Generation event at top entity generator 300

Generation event at bottom entity generator 310

Port selection event at switch 200

At T=1,

1 The switch selects its IN2 entity input port.

2 The top entity generator generates an entity, which cannot depart because
the switch’s IN1 entity input port is unavailable.

3 The bottom entity generator generates an entity, which advances from
block to block until it reaches the Attribute Scope block.

At T=2,

2-24

Using the Event Calendar

1 The switch selects its IN1 entity input port. This causes the top entity
generator to output the entity it generated 1 second ago. This entity
advances from block to block until it reaches the Attribute Scope block.

2 The bottom entity generator generates an entity, which cannot depart
because the switch’s IN2 entity input port is unavailable.

At T=3,

1 The switch selects its IN2 entity input port. This causes the bottom entity
generator to output the entity it generated 1 second ago. This entity
advances from block to block until it reaches the Attribute Scope block.

2 The top entity generator generates an entity, which cannot depart because
the switch’s IN1 entity input port is unavailable.

The plot of entities’ Source attribute values shows an alternating pattern,
as does the plot of the port selection signal p. One entity departs from the
switch every second.

Port Selection Signal

Switch Departures When Port Selection Is Processed First

Generating Entities First
Suppose the model is configured so that the two entity generators and the
switch have the explicit event priorities shown below.

2-25

2 Working with Events

Event Type Event Priority

Generation event at top entity generator 300

Generation event at bottom entity generator 310

Port selection event at switch 4000

At the beginning of the simulation, the port selection signal p is 1.

At T=1,

1 The top entity generator generates an entity, which advances from block to
block until it reaches the Attribute Scope block.

2 The bottom entity generator generates an entity, which cannot depart
because the switch’s IN2 entity input port is unavailable.

3 The switch selects its IN2 entity input port. This causes the bottom entity
generator to output the entity it just generated. This entity advances from
block to block until it reaches the Attribute Scope block.

At T=2,

1 The top entity generator generates an entity, which cannot depart because
the switch’s IN1 entity input port is unavailable.

2 The bottom entity generator generates an entity, which advances from
block to block until it reaches the Attribute Scope block.

3 The switch selects its IN1 entity input port. This causes the top entity
generator to output the entity it just generated. This entity advances from
block to block until it reaches the Attribute Scope block.

The plot of entities’ Source attribute values shows that two entities depart
from the switch every second.

2-26

Using the Event Calendar

Switch Departures When Entity Generations Are Processed First

Randomly Selecting a Sequence
Suppose the model is configured so that the two entity generators and the
switch have equal event priorities. By default, the application uses an
arbitrary processing sequence for the entity generation es and the port
selection events, which might or might not be appropriate in an application.
To avoid bias by randomly determining the processing sequence for these
events, set Execution order of simultaneous events to Randomized in the
model’s Configuration Parameters dialog box.

The plot of entities’ Source attribute values shows that at some event times,
one entity departs from the switch, while at other event times, two entities
depart from the switch. An example is below, but your results might vary
depending on the specific random numbers.

Switch Departures When Processing Sequence is Random

2-27

2 Working with Events

Observing Events
The event logging feature described in “Viewing the Event Calendar” on page
11-2 can help you observe events that appear on the event calendar. The table
below suggests some ways to observe events that do not appear on the event
calendar. Key tools are the Instantaneous Event Counting Scope block, Signal
Scope block, and Discrete Event Signal to Workspace block. You can also
build a discrete event subsystem that counts events and creates a signal, as
illustrated in “Example: Focusing on Events, Not Values” on page 8-22.

Note Do not select Specify event priority... options in block dialog boxes
for the sole purpose of using the event logging feature to observe those
events. When you have a choice about whether an event appears on the event
calendar, your decision might affect the processing sequence of simultaneous
events and hence the simulation behavior.

Event Observation Technique

Sample time hit

Value change

Trigger

Use a branch line to connect the signal to an
Instantaneous Event Counting Scope block.

Function call If the block issuing the function call provides a #f1
output signal, then observe its increases. Otherwise,
configure a Signal-Based Function-Call Event Generator
block by enabling the #f1 output port and setting
Generate function call only upon to Function call
from port fcn; then insert this block between the
block issuing the function call and the block reacting
to the function call.

Entity
generation

Observe values of the entity generator’s pe output
signal. Upon an entity generation, pe repeats a previous
value of 0 (if the generated entity departs immediately)
or increases from 0 to 1 (if the entity cannot depart).

Entity
destruction

Observe increases in the #a output signal. The
Instantaneous Entity Counting Scope block provides a
plot in place of a #a signal.

2-28

Observing Events

Event Observation Technique

Entity
advancement

Observe increases in the #d output signal of the block
from which the entity departs. Alternatively, use the
entity logging feature described in “Viewing Entity
Locations” on page 11-8.

Service
completion

Observe values of the server’s #pe (or pe in the case of
the Single Server block) output signal. Upon a service
completion, the signal repeats a previous value of 0
(if the entity departs immediately) or increases (if the
entity cannot depart). Because simultaneous repeated
values would not be easy to observe on a plot, it is best
to observe the signal value in the MATLAB workspace if
a departure and a new service completion might occur
simultaneously in your model.

Preemption Observe increases in the #p output signal of the server
block.

Counter reset Observe falling edges in the counter block’s #d output
signal. Alternatively, use a branch line to connect the
counter block’s input signal to an Instantaneous Event
Counting Scope block.

Gate opening or
closing

Use a branch line to connect the gate block’s input signal
to an Instantaneous Event Counting Scope block. In the
case of an enabled gate, rising trigger edges of the input
signal indicate gate opening events, while falling trigger
edges of the input signal indicate gate closing events.

Port selection If the block has a p input signal, use a branch line
to connect the p signal to an Instantaneous Event
Counting Scope block, configured to plot value changes.
Otherwise, observe the block’s last output signal.

Memory writing Observe sample time hits in the Signal Latch block’s
mem output signal.

Memory reading Observe sample time hits in the Signal Latch block’s
out output signal.

2-29

2 Working with Events

For examples that use one or more of these techniques, see

• “Example: Plotting Event Counts to Find Roundoff Error” on page 9-12

• “Example: Entity Logging” on page 11-9

• “Example: Observing Service Completions” on page 2-30

• “Example: Focusing on Events, Not Values” on page 8-22

Also, “Example: Detecting Collisions by Comparing Events” on page 2-32
shows how to use a Signal Latch block to observe which of two types of events
occurred more recently.

Example: Observing Service Completions
The model below writes an N-Server block’s #pe signal to a structure called
pe in the MATLAB workspace. In the structure, pe.time indicates when each
value is attained and pe.signals.values indicates the corresponding value.

An entity completes its service at precisely those times when the #pe signal
repeats its previous value or increases to a larger value. You can form a vector
of service completion times using the code below.

% Output #pe times and values.
pe_matrix = [pe.time, pe.signals.values]

% Determine when #pe changes its value.
dpe = [0; diff(pe.signals.values)];

2-30

Observing Events

% Service completions occur when #pe does not decrease.
t_svcp = pe.time(dpe >= 0)

Sample output, which depends on the entity generation, service completion,
gate opening, and gate closing times in the model, is below. Notice the rows of
pe_matrix in which the first column is 2.0000 and the second column has
decreasing values. These correspond to decreases in the #pe signal value at
T=2, which result from departures of entities that previously completed their
service. The value T=2 does not appear in the t_svcp vector because this is
not a time at which service completion events occur.

pe_matrix =

0.9077 1.0000
1.0849 2.0000
1.8895 3.0000
2.0000 2.0000
2.0000 1.0000
2.0000 0
2.4487 0
3.0707 0
3.1958 0
3.4068 0
3.5856 0
3.7906 0
4.3674 0
4.8672 1.0000
4.9545 2.0000

t_svcp =

0.9077
1.0849
1.8895
2.4487
3.0707
3.1958
3.4068

2-31

2 Working with Events

3.5856
3.7906
4.3674
4.8672
4.9545

Example: Detecting Collisions by Comparing Events
The model below aims to determine whether an entity is the only entity in an
infinite server for the entire duration of service. The model uses the Signal
Latch block to compare the times of two kinds of events and report which kind
occurred more recently. This usage of the Signal Latch block relies on the
block’s status output signal, st, rather than the default in and out ports.

In the model, entities arrive at an infinite server, whose #n output signal
indicates how many entities are in the server. The Signal Latch block
responds to these signal-based events involving the integer-valued #n signal:

• If #n increases from 0 to a larger integer, then

- rtr has a rising edge.

- The Signal Latch block processes a read event.

2-32

Observing Events

- The Signal Latch block’s st output signal becomes 0.

• If #n increases from 1 to a larger integer, then

- wtr has a rising edge.

- The Signal Latch block processes a write event.

- The Signal Latch block’s st output signal becomes 1.

• If #n increases from 0 to 2 at the same value of the simulation clock, then it
also assumes the value 1 as a zero-duration value. As a result,

- rtr and wtr both have rising edges, in that sequence.

- The Signal Latch block processes a read event followed by a write event.

- The Signal Latch block’s st output signal becomes 1.

By the time the entity departs from the Infinite Server block, the Signal Latch
block’s st signal is 0 if and only if that entity has been the only entity in the
server block for the entire duration of service. This outcome is considered a
success for that entity. Other outcomes are considered collisions between that
entity and one or more other entities.

2-33

2 Working with Events

Generating Function-Call Events
You can generate an event and use it to

• Invoke a discrete event subsystem or a Stateflow block

• Cause certain events, such as the opening of a gate or the reading of
memory in a Signal Latch block

• Generate an entity

For most purposes, a function call is an appropriate type of event to generate.

Note While you can invoke triggered subsystems and Stateflow blocks upon
trigger edges, this method has limitations in discrete-event simulations.
In particular, you should use function calls instead of trigger edges if you
want the invocations to occur asynchronously, to be prioritized among other
simultaneous events, or to occur more than once in a fixed time instant.

These topics describe how to generate function calls in an event-based or
time-based manner:

• “Generating Events When Other Events Occur” on page 2-34

• “Generating Events Using Intergeneration Times” on page 2-36

Generating Events When Other Events Occur
The table below indicates which blocks generate function calls when other
events occur.

Event Upon Which to
Generate Another Event

Block

Entity advancement Entity-Based Function-Call Event Generator

Signal-based event Signal-Based Function-Call Event Generator

Function call Signal-Based Function-Call Event Generator

2-34

Generating Function-Call Events

Example: Calling a Stateflow Block Upon Changes in Server
Contents
The fragment below, which is part of an example in “Using Stateflow to
Implement a Failure State” on page 4-17, uses entities to represent failures
and repairs of a server elsewhere in the model:

• A failure of the server is modeled as an entity’s arrival at the block labeled
Repair Work. When the Repair Work block’s #n signal increases to reflect
the entity arrival, the Signal-Based Function-Call Event Generator block
generates a function call that calls the Stateflow block to change the state
of the server from up to down.

• A completed repair of the server is modeled as an entity’s departure from
the Repair Work block. When the Repair Work block’s #n signal decreases
to reflect the entity departure, the Signal-Based Function-Call Event
Generator block generates a function call that calls the Stateflow block to
change the state of the server from down to up.

One reason to use function calls rather than trigger signals to call a Stateflow
block in discrete-event simulations is that an event-based signal can
experience a trigger edge due to a zero-duration value that a time-based block
would not recognize. The Signal-Based Function-Call Event Generator can
detect signal-based events that involve zero-duration values.

2-35

2 Working with Events

Generating Events Using Intergeneration Times
To generate events using intergeneration times from a signal or a statistical
distribution, use this procedure:

1 Use the signal or statistical distribution with the Time-Based Entity
Generator block to generate entities.

2 Use the Entity-Based Function-Call Event Generator block to generate an
event associated with each entity.

3 Terminate the entity path with an Entity Sink block.

In the special case when the intergeneration time is constant, a simpler
alternative is to use the Function-Call Generator block in the Simulink Ports
& Subsystems library.

Example: Opening a Gate Upon Random Events
The model below uses the top entity generator to generate entities whose sole
purpose is to cause the generation of events with intergeneration times from
a statistical distribution. The bottom entity generator generates entities
that enter a gated queuing system.

2-36

Manipulating Events

Manipulating Events
You can manipulate an event to accomplish any of these goals:

• To invoke a function-call subsystem or Stateflow block upon entity
departures or signal-based events.

Note You can invoke triggered subsystems and Stateflow blocks upon
trigger edges, which are a type of signal-based event. However, you
will need to translate the trigger edges into function calls if you want
the invocations to occur asynchronously, to be prioritized among other
simultaneous events, or to occur more than once in a fixed time instant.

• To create a union of events from multiple sources. See “Creating a Union
of Multiple Events” on page 2-38.

• To prioritize the reaction to an event relative to simultaneous events. See
“Translating Events to Control the Processing Sequence” on page 2-41.

• To delay the reaction to an event. See the Function-call time delay
parameter on the Signal-Based Event to Function-Call Event block’s
reference page.

• To conditionalize the reaction to an event. See “Conditionalizing Events”
on page 2-42.

The term event translation refers to the conversion of one event into another.
The result of the translation is often a function call, but can be another type
of event. The result of the translation can occur at the same time as, or a
later time than, the original event.

Blocks for Manipulating Events
The table below lists blocks that are useful for manipulating events.

2-37

2 Working with Events

Event to
Manipulate

Block

Entity advancement Entity Departure Event to Function-Call Event

Signal-based event Signal-Based Event to Function-Call Event

Signal-Based Event to Function-Call EventFunction call

Mux

If you connect the Entity Departure Counter block’s #d output port to a block
that detects sample time hits or rising value changes, then you can view the
counter as a mechanism for converting an entity advancement event into a
signal-based event. Corresponding to each entity departure from the block is
an increase in the value of the #d signal.

Creating a Union of Multiple Events
To generate a function-call signal that represents the union (logical OR) of
multiple events, use this procedure:

1 Generate a function call for each event that is not already a function call.
Use blocks in the Event Generators or Event Translation library.

2 Use the Mux block to combine the function-call signals.

The multiplexed signal carries a function call when any of the individual
function-call signals carries a function call. If two individual signals carry a
function call at the same time instant, then the multiplexed signal carries two
function calls at that time instant.

Examples are in “Example: Performing a Computation on Selected Entity
Paths” on page 8-31 and below.

Example: Counting Events from Multiple Sources
The example below illustrates different approaches to event translation and
event generation. This example varies the approach for illustrative purposes;
in your own models, you might decide to use a single approach that you find
most intuitive.

2-38

Manipulating Events

The goal of the example is to plot the number of arrivals at a bank of three
servers at each value of time. Entities advance to the servers via one or
two FIFO Queue blocks. To count arrivals and create the plot, the model
translates each arrival at a server into a function call; the Mux block combines
the three function-call signals to create an input to the Instantaneous Event
Counting Scope block.

The three server paths use these methods for translating an entity arrival
into a function call:

• One path uses the Entity Departure Event to Function-Call Event block,
treating the problem as one of event translation.

• One path uses the Entity-Based Event Generator block, treating the
problem as one of event generation. This is similar to the approach above.

• One path uses the Signal-Based Event to Function-Call Event block to
translate an increase in the value of the server block’s #n signal into a
function call. This approach uses the fact that each arrival at the server
block causes a simultaneous increase in the block’s #n signal.

2-39

2 Working with Events

Example: Executing a Subsystem Based on Multiple Types of
Events
You can configure a Discrete Event Subsystem block to detect signal-based
events from one or more sources, and you can configure a Function-Call
Subsystem block to detect function calls from one or more sources. Using an
event translation block to convert a signal-based event into a function call,
the fragment below effectively creates a subsystem that detects a function
call from a Stateflow block and a signal-based event from another source.
The subsystem is executed when either the Stateflow block generates a
function call or the signal connected to the vc port of the Signal-Based Event
to Function-Call Event block changes. If both events occur simultaneously,
then the subsystem executes twice.

“Block execution” in this documentation is shorthand for “block methods
execution.” Methods are functions that Simulink uses to solve a model. Blocks
are made up of multiple methods. For details, see “Block Methods” in the
Simulink documentation.

2-40

Manipulating Events

Another similar example is in “Example: Performing a Computation on
Selected Entity Paths” on page 8-31.

Translating Events to Control the Processing Sequence
In some situations, event translation blocks can help you prescribe the
processing sequence for simultaneous events. The examples below illustrate
how to do this by taking advantage of the sequence in which an event
translation block issues two function calls, and by converting an unprioritized
function call into a function call having an event priority.

Example: Issuing Two Function Calls in Sequence
In the model below, entity generation and the execution of a function-call
subsystem can occur simultaneously. At such times, it is important that
the entity generation occur first, so that the entity generator updates the
value of the w signal before the function-call subsystem uses w in its
computation. This model ensures a correct processing sequence by using the
same Signal-Based Event to Function-Call Event block to issue both function
calls and by relying on the fact that the block always issues the f1 function
call before the f2 function call.

2-41

2 Working with Events

Example: Generating a Function Call with an Event Priority
The model below uses an event translation block to prioritize the execution
of a function-call subsystem correctly on the event calendar, relative to a
simultaneous event. In the model, a Stateflow block and an entity generator
respond to edges of the same trigger signal. The Stateflow block calls an
event translation block, which in turn calls a function-call subsystem. The
subsystem performs a computation using the w output signal from the entity
generator.

As in the earlier example, it is important that the entity generator update
the value of the w signal before the function-call subsystem uses w in its
computation. To ensure a correct processing sequence, the Signal-Based
Event to Function-Call Event block replaces the original function call, which
is not on the event calendar, with a new function call that appears on the
event calendar with a priority of 200. The Event-Based Entity Generator
block creates an entity generation event on the event calendar with a priority
of 100. As a result of the event translation and the relative event priorities,
the entity generator generates the entity before the event translator issues
the function call to the function-call subsystem whenever these events occur
at the same value of the simulation clock.

Conditionalizing Events
The Entity Departure Event to Function-Call Event and Signal-Based Event
to Function-Call Event blocks provide a way to suppress the output function

2-42

Manipulating Events

call based on a control signal. If the control signal is zero or negative when
the block is about to issue the function call, then the block suppresses the
function call. You can use this feature to

• Prevent simulation problems. The example in “Example: Detecting
Changes in the Last-Updated Signal” on page 3-10 uses conditional
function calls to prevent division-by-zero warnings.

• Model an inoperative state of a component of your system. See the next
example.

Example: Modeling Periodic Shutdown of an Entity Generator
The model below uses Event-Based Entity Generator blocks to generate
entities when a pulse signal changes its value. The top entity generator
generates an entity upon each such event. The bottom entity generator
responds to a function call issued by an event translation block that detects
changes in the pulse signal’s value. However, the event translation block
issues a function call only upon value changes that occur while the e1
input signal is positive. In this model, a nonpositive value of the e1 signal
corresponds to a failure or resting period of the entity generator.

2-43

2 Working with Events

2-44

3

Working with Signals

Role of Event-Based Signals in
SimEvents Models (p. 3-2)

Overview of event-based signals and
issues involving them

Generating Random Signals (p. 3-4) Producing random numbers in an
event-based or time-based manner

Sequence of Updates of Output
Signals (p. 3-10)

Signal updates relative to each other

Multiple Simultaneous Updates
(p. 3-13)

Working with zero-duration values

Latency in Signal Updates (p. 3-17) Delays in signal updates or reactions
to updates

Manipulating Signals (p. 3-18) Using the Signal Latch block to
delay or resample signals

Sending Data to the MATLAB
Workspace (p. 3-23)

Collecting data from event-based
signals for manipulation in MATLAB

3 Working with Signals

Role of Event-Based Signals in SimEvents Models
Discrete-event simulations often involve signals that change when events
occur; for example, the number of entities in a server is a statistical output
signal from a server block and the signal value changes when an entity arrives
at or departs from the server. An event-based signal is a signal that can
change in response to discrete events. Most output signals from SimEvents
blocks are event-based signals.

Comparison With Time-Based Signals
Unlike time-based signals, event-based signals

• Do not have a true sample time. (These are not continuous signals, even
though the sample time coloration feature makes the signal connection line
black or gray, and a Probe block reports a sample time of zero.)

• Might be updated at time instants that do not correspond to time steps
determined by time-based dynamics.

• Might undergo multiple updates in a single time instant.

• Might have the first update upon the first relevant event, not necessarily
at the beginning of the simulation.

For example, consider a signal representing the number of entities in a server.
Computing this value at fixed intervals is wasteful if no entities arrive or
depart for long periods. Computing the value at fixed intervals is inaccurate if
entities arrive or depart in the middle of an interval, because the computation
misses those events. Simultaneous events can make the signal multivalued;
for example, if an entity completes its service and departs, which permits
another entity to arrive at the same time instant, then the count at that time
equals both 0 and 1 at that time instant. Furthermore, if an updated value
of the count signal causes an event, then the processing of the signal update
relative to other operations at that time instant can affect the processing
sequence of simultaneous events and change the behavior of the simulation.

When you use output signals from SimEvents blocks to examine the detailed
behavior of your system, you should understand when the blocks update the
signals, including the possibility of multiple simultaneous updates. When
you use event-based signals for controlling the dynamics of the simulation,

3-2

Role of Event-Based Signals in SimEvents Models

understanding when blocks update the signals and when other blocks react to
the updated values is even more important.

Note Blocks in the SimEvents libraries process signals whose data type is
double. To convert between data types, use the Data Type Conversion block
in the Simulink Signal Attributes library.

3-3

3 Working with Signals

Generating Random Signals
Discrete-event simulations often use random numbers for entity
intergeneration times, service times, routing, and other purposes. An
important block for generating random signals is the Event-Based Random
Number block. These topics describe how to use this block to produce random
signals:

• “Generating Random Event-Based Signals” on page 3-4

• “Examples of Random Event-Based Signals” on page 3-6

• “Generating Random Time-Based Signals” on page 3-8

For details on the connectivity restrictions of the Event-Based Random
Number block, see its reference page.

Generating Random Event-Based Signals
The Event-Based Random Number block is designed to create event-based
signals using a variety of distributions. The block generates a new random
number from the distribution upon notifications from a port of a subsequent
block. For example, when connected to the t input port of a Single Server
block, the Event-Based Random Number block generates a new random
number each time it receives notification that an entity has arrived at the
server.

Implied Timing of Random Number Generation
Notifying ports, listed in the table below, notify the preceding block when a
certain event has occurred. When the preceding block is the Event-Based
Random Number block, it responds to the notification by generating a new
random number. The Event-Based Random Number block must be connected
to exactly one notifying port.

3-4

Generating Random Signals

Notifying Ports

Signal Input
Port

Block Generate New Random
Number Upon

A1, A2, A3,
A4

Set Attribute Entity arrival

in Signal Latch Write event

Entity Departure Event to
Function-Call Event

Entity arrivale1, e2

Signal-Based Event to
Function-Call Event

Relevant signal-based event,
depending on configuration of
block

Infinite Server Entity arrival

N-Server Entity arrival

t

Single Server Entity arrival

t Time-Based Entity
Generator

Simulation start and
subsequence entity departures

x X-Y Signal Scope Sample time hit at in signal
input port

To observe signal values, you can optionally use a branch line to connect
the Event-Based Random Number block to one or more monitoring ports.
Monitoring ports are listed on the reference page for the Event-Based Random
Number block. Connections from the Event-Based Random Number block to
ports other than notifying ports and monitoring ports are not supported.

Generating Random Signals Based on Arbitrary Events
When generating random event-based signals other than the cases covered
in “Implied Timing of Random Number Generation” on page 3-4, you should
use the Signal Latch block to indicate explicitly which events cause the
Event-Based Random Number block to generate a new random number. Use
this procedure:

1 Insert an Event-Based Random Number block into your model and
configure it to indicate the distribution and parameters you want to use.

3-5

3 Working with Signals

2 Insert a Signal Latch block and set Read from memory upon to Write
to memory event. The block no longer has an rvc signal input port.

3 Determine which events should result in the generation of a new random
number, and set the Signal Latch block’s Write to memory upon
accordingly.

4 Connect the signal whose events you identified in the previous step to
the write-event port (wts, wvc, wtr, or wfcn) of the Signal Latch block.
Connect the Event-Based Random Number block to the in port of the
Signal Latch block.

The out port of the Signal Latch block is the desired random event-based
signal.

Examples of Random Event-Based Signals
For examples using the Event-Based Random Number block in some of the
contexts described in “Implied Timing of Random Number Generation” on
page 3-4, see

• “Example: Using an Arbitrary Discrete Distribution as Intergeneration
Time” in the Getting Started documentation

• “Example: Setting Attributes” on page 1-12

• “Generating Packets” in the Getting Started documentation

• “Example: Using Random Service Times in a Queuing System” in the
Getting Started documentation

• “Example: Event Calendar for a Queue-Server Model” on page 2-11

• “Example: M/M/5 Queuing System” on page 4-13

• “Example: Compound Switching Logic” on page 5-5

The model in “Example: Compound Switching Logic” on page 5-5 also
illustrates how to use the Signal Latch block as described in “Generating
Random Signals Based on Arbitrary Events” on page 3-5, to generate a
random number upon each departure from an Input Switch block.

3-6

Generating Random Signals

The models in “Example: Invalid Connection of Event-Based Random Number
Generator” on page 11-29 illustrate how to follow the connection rules for the
Event-Based Random Number block.

Example: Creating a Random Signal for Switching
The model below, similar to the one in “Example: Using Entity-Based Timing
for Choosing a Port” on page 8-29, implements random output switching
with a skewed distribution. The Signal Latch block causes the Event-Based
Random Number block to generate a new random number upon each increase
in the FIFO Queue block’s #d output signal, that is, each time an entity
advances from the queue to the server. The random number becomes the
switching criterion for the Output Switch block that follows the server. The
plot reflects the skewed probability defined in the Event-Based Random
Number block, which strongly favors 1 instead of 2 or 3.

3-7

3 Working with Signals

Generating Random Time-Based Signals
The Random Number and Uniform Random Number blocks in the Simulink
Sources library create time-based random signals with Gaussian and uniform
distributions, respectively. The Event-Based Random Number block supports
other distributions but is designed to create event-based signals. To generate
time-based random signals using the Event-Based Random Number block,
use this procedure:

1 Insert an Event-Based Random Number block into your model and
configure it to indicate the distribution and parameters you want to use.

2 Insert and configure a Signal Latch block:

a Set Write to memory upon to Sample time hit from port wts.

b Set Read from memory upon to Write to memory event.

The block now has input ports wts and in, but not wvc or rvc.

3 Insert a Step block (or another time-based source block) and set Sample
time to the desired sample time of the time-based signal you want to create.

4 Connect the Step block to the wts port of the Signal Latch block. Connect
the Event-Based Random Number block to the in port of the Signal Latch
block.

3-8

Generating Random Signals

The out port of the Signal Latch block is a time-based signal whose sample
time is the one specified in the Step block and whose values come from the
Event-Based Random Number block. An example is below.

3-9

3 Working with Signals

Sequence of Updates of Output Signals
When a block produces more than one output signal in response to events, the
simulation behavior might depend on the sequence of signal updates relative
to each other. This is especially likely if you use one of the signals to influence
a behavior or computation that also depends on another one of the signals, as
in “Example: Detecting Changes in the Last-Updated Signal” on page 3-10
and “Example: Detecting Changes from Empty to Nonempty” on page 8-23.

When you turn on more than one output signal from a SimEvents block’s
dialog box (typically, from the Statistics tab), the block updates each of
the signals in a sequence. See the Signal Output Ports table on the block’s
reference page to learn about the update order:

• In some cases, a block’s reference page specifies the sequence explicitly
using unique numbers in the Order of Update column.

For example, the reference page for the N-Server block indicates that upon
entity departures, the w signal is updated before the #n signal. The Order
of Update column in the Signal Output Ports table lists different numbers
for the w and #n signals.

• In some cases, a block’s reference page lists two or more signals without
specifying their sequence relative to each other. Such signals are updated
in an arbitrary sequence relative to each other and you should not rely on
a specific sequence for your simulation results.

For example, the reference page for the N-Server block indicates that the
w and util signals are updated in an arbitrary sequence relative to each
other. The Order of Update column in the Signal Output Ports table lists
the same number for both the w and util signals.

• When a block offers fewer than two signal output ports, the sequence
of updates does not need explanation on the block’s reference page. For
example, the reference page for the Enabled Gate block does not indicate
an update sequence because the block can output only one signal.

Example: Detecting Changes in the Last-Updated
Signal
The model below plots the ratio of the queue’s current length to the time
average of the queue length. The FIFO Queue block produces #n and len

3-10

Sequence of Updates of Output Signals

signals representing the current and average lengths, respectively. The
computation of the ratio occurs in a function-call subsystem that is called
when the Signal-Based Event to Function-Call Event block detects a change
in #n (as long as len is positive, to avoid division-by-zero warnings). Because
the FIFO Queue block updates the len signal before updating the #n signal,
both signals are up to date when the value change occurs in the #n signal.

Top-Level Model

Subsystem Contents

If you instead connect the len signal to the Signal-Based Event to
Function-Call Event block’s vc input port, then the block issues a function

3-11

3 Working with Signals

call upon detecting a change in the len signal. At that point, the #n value
is left over from the block’s previous arrival or departure, so the computed
ratio is incorrect.

3-12

Multiple Simultaneous Updates

Multiple Simultaneous Updates
Simultaneous events, which might be causally related to each other, are
common in discrete-event simulation. This section describes how they
affect output signals from SimEvents blocks. Common scenarios involving
simultaneous events include the following:

• An entity completes its service and departs from a server, which permits
an entity to arrive at the same time instant from a queue that precedes
the server.

• An entity arrives at an empty queue, finds that the subsequent server block
is also empty, and advances immediately to the server.

• An Enabled Gate block between a queue and an Entity Sink block changes
from the closed state to the open state, which permits all entities in the
queue to depart simultaneously.

This section defines zero-duration values and illustrates how you can detect
them in your simulation. The topics are as follows:

• “Zero-Duration Values of Signals” on page 3-13

• “Importance of Zero-Duration Values” on page 3-14

• “Detecting Zero-Duration Values” on page 3-14

Zero-Duration Values of Signals
Some output signals from SimEvents blocks produce a new output value for
each departure from the block. When multiple departures occur in a single
time instant, the result is a multivalued signal. That is, at a fixed instant in
time, the signal assumes multiple values in sequence. The sequence of values
corresponds to the sequence of departures. Although the departures and
values have a well-defined sequence, no time elapses between adjacent events.

Scenario: Server Departure and New Arrival
For example, consider the scenario in which an entity departs from a server
at time T and, consequently, permits another entity to arrive from a queue
that precedes the server. The statistic representing the number of entities in
the server is 1 just before time T because the first entity has not completed

3-13

3 Working with Signals

its service. The statistic is 1 just after time T because the second entity has
begun its service. At time T, the statistic is 0 before it becomes 1 again. The
value of 0 corresponds to the server’s empty state after the first entity has
departed and before the second entity has arrived. Like this empty state, the
value of 0 does not persist for a positive duration.

Scenario: Status of Pending Entities in a Queue
Another example of zero-duration values is in “Plotting the Pending-Entity
Signal”, which discusses a signal that indicates when the entity at the head of
a queue is unable to depart. This signal becomes 0 if the entity at the head of
the queue, previously unable to depart, finally departs. If the queue is left
with other entities that cannot depart at this time, then the signal becomes 1
again. That is, the value of 0 does not persist for a positive duration.

Importance of Zero-Duration Values
The values of signals, even values that do not persist for a positive duration,
can help you understand or debug your simulations. In the example
described in “Scenario: Server Departure and New Arrival” on page 3-13, the
zero-duration value of 0 in the signal tells you that the server experienced
a departure. If the signal assumed only the value 1 at time T (because 1
is the final value at time T), then the constant values before, at, and after
time T would fail to indicate the departure. While you could use a departure
count signal to detect departures specifically, the zero-duration value in the
number-in-block signal provides you with more information in a single signal.

Detecting Zero-Duration Values
These topics describe ways to detect and examine zero-duration values:

• “Plotting Signals that Exhibit Zero-Duration Values” on page 3-14

• “Plotting the Number of Signal Changes Per Time Instant” on page 3-16

• “Viewing Zero-Duration Values in the MATLAB Workspace” on page 3-16

Plotting Signals that Exhibit Zero-Duration Values
One way to visualize event-based signals, including signal values that do not
persist for a positive duration, is to use the Signal Scope or X-Y Signal Scope

3-14

Multiple Simultaneous Updates

block. Either of these blocks can produce a plot that includes a marker for
each signal value (or each signal-based event, in the case of the event counting
scope). For example, the figure below uses a plot to illustrate the situation
described in “Scenario: Server Departure and New Arrival” on page 3-13.

����	
�
���	�
�����

����	
�
�������

���������
�������
�
�����

��������	
�
��������

�����
�
�������
�
�����

When multiple plotting markers occur along the same vertical line, it means
that the signal assumes multiple values at a single time instant. The callouts
in the figure describe the server states that correspond to a few key points of
the plot.

By contrast, some of the vertical lines have exactly one marker, meaning that
the signal value at that time instant is unique. For example, at time 85,
an arrival at the previously empty server is the only server-related activity
at that time instant.

The preceding figure was created by modifying the mm1 demo model: in
particular, raising the arrival rate somewhat, enabling the Number of
entities in block signal in the Single Server block, inserting a Signal Scope
block, and then attaching the scope to the server’s #n signal output port.

3-15

3 Working with Signals

Note Unlike the Signal Scope block and X-Y Signal Scope blocks, the Scope
block in the Simulink Sinks library does not detect zero-duration values.
For more information, see “Comparison with Time-Based Plotting Tools” on
page 9-15.

Plotting the Number of Signal Changes Per Time Instant
To detect the presence of zero-duration values, but not the values themselves,
use the Instantaneous Event Counting Scope block with the Type of value
change parameter set to Either. When a stem in the plot has a height of
two or greater, the input signal has assumed multiple values at that instant
of time.

For an example using this block, see “Example: Plotting Event Counts to
Find Roundoff Error” on page 9-12.

Viewing Zero-Duration Values in the MATLAB Workspace
If an event-based signal assumes many values at one time instant and you
cannot guess the sequence from a plot of the signal versus time, then you can
get more information by examining the signal in the MATLAB workspace.
By creating a variable that contains each time and signal value, you can
recover the exact sequence in which the signal assumed each value during the
simulation.

See “Sending Data to the MATLAB Workspace” on page 3-23 for instructions
and an example.

3-16

Latency in Signal Updates

Latency in Signal Updates
In some cases, the updating of an output signal or the reaction of a block to
updates in the signal can experience a delay:

• When you use an event-based signal as an input to a time-based block
that is not in a discrete event subsystem, the block might not react to
changes in the input at exact event times but instead might react at the
next time-based sample time hit for that block.

To make time-based blocks react to changes immediately when an event
occurs in another block, use a discrete event subsystem. For details and
examples, see Chapter 8, “Controlling Timing Using Subsystems”.

• The update of an output signal in one block might occur after other
operations occur at that value of time, in the same block or in other blocks.
This latency does not last a positive length of time, but might affect
your simulation results. For details and an example, see “Interleaved
Operations of Storage and Nonstorage Blocks” on page 12-4.

• When the definition of a statistical signal suggests that its value can vary
continuously as simulation time elapses, the block increases efficiency by
updating the signal value only at key moments during the simulation. As a
result, the signal has a somewhat outdated “approximate” value between
such key moments, but corrects the value later.

The primary examples of this phenomenon are the signals that represent
time averages, such as a server’s utilization percentage. The definitions
of time averages involve the current time, but simulation performance
would suffer drastically if the block recomputed the percentage at each
time-based simulation step. Instead, the block recomputes the percentage
only upon the arrival or departure of an entity, when the simulation ends,
and when you pause the simulation. For an example, see the reference
page for the Single Server block.

When plotting statistics that, by definition, vary continuously as simulation
time elapses, consider using a continuous-style plot. For example, set Plot
type to Continuous in the Signal Scope block.

3-17

3 Working with Signals

Manipulating Signals
The Signal Latch is a versatile block for manipulating event-based signals.
You can use it to delay or resample signals based on events, not time. You
can also use it to add an initial condition to event-based signals. The topics
here are as follows:

• “Defining Initial Conditions for Event-Based Signals” on page 3-18

• “Example: Resampling a Signal Based on Events” on page 3-20

In addition, see these examples:

• “Generating Random Event-Based Signals” on page 3-4

• “Generating Random Time-Based Signals” on page 3-8

• “Example: Detecting Collisions by Comparing Events” on page 2-32

• “Example: Compound Switching Logic” on page 5-5

Defining Initial Conditions for Event-Based Signals
Many event-based signals have the first update upon the first relevant event,
not necessarily at the beginning of the simulation. If you need to initialize
the signal before the first relevant event occurs, you can define an initial
condition for the signal using the Signal Latch block. An initial condition is
useful when a feedback loop involves an event-based signal, as in “Example:
Controlling Joint Availability of Two Servers” on page 7-4.

To define an initial condition, use this procedure:

1 Set these parameters in the Signal Latch block:

• Initial memory value = your desired initial condition

• Write to memory upon = Sample time hit from port wts

• Read from memory upon = Write to memory event

• Select Report memory value upon write event, mem

• Clear Report memory value upon read event, out

3-18

Manipulating Signals

The block now has signal input ports wts and in, and a signal output
port mem.

2 Connect the signal whose initial condition you want to define to both the in
and wts ports of the Signal Latch block.

The Signal Latch block’s mem output signal uses your initial condition until
your original signal has its first update. Afterward, the mem signal and your
original signal are identical.

Example: Defining #d Before the First Entity Departure
The model below illustrates the procedure above by defining an initial
condition for the Time-Based Entity Generator block’s #d output signal. The
initial condition is in effect until the first entity departs from the generator
block.

Two plots show the #d signal as produced by the generator block and the
mem signal produced by the Signal Latch block. Notice that before the first
entity’s departure from the generator block, the plot of the #d signal is blank,
while the plot of the mem signal reflects an initial condition of zero.

3-19

3 Working with Signals

Example: Resampling a Signal Based on Events
The model below contains a server that supports preemption of normal-priority
entities by high-priority entities. This is similar to “Example: Preemption by
High-Priority Entities” on page 4-11. Suppose that a preemption and the
subsequent service of a high-priority entity represents a time interval during
which the server is inoperable. The goal of this example is to find out how
many entities are in the queue when the breakdown begins.

3-20

Manipulating Signals

A plot of the Priority Queue block’s #n output signal indicates how many
entities are in the queue at all times during the simulation.

The Signal Latch block resamples the #n signal, focusing only on the values
that #n assumes when a high-priority queue preempts an entity already in
the server. The Signal Latch block outputs a sample from the #n signal
whenever the Single Server block’s #p output signal increases, where #p is
the number of entities that have been preempted from the server. Between
pairs of successive preemption events, the Signal Latch block does not update
its output signal, ignoring changes in #n. A plot of the output from the Signal
Latch block makes it easier to see how many entities are in the queue when
the breakdown begins, compared to the plot of the entire #n signal.

3-21

3 Working with Signals

3-22

Sending Data to the MATLAB Workspace

Sending Data to the MATLAB Workspace
The Discrete Event Signal to Workspace block writes event-based signals to
the MATLAB workspace when the simulation stops or pauses. When inside
a discrete event subsystem, the To Workspace block can also be useful for
writing event-based signals to the MATLAB workspace.

Example: Sending Queue Length to the Workspace
The model below shows one way to write the times and values of an
event-based signal to the MATLAB workspace. In this case, the signal is
the #n output from a FIFO Queue block, which indicates how many entities
the queue holds.

After you run this simulation, you can use the following code to create a
two-column matrix containing the times values in the first column and the
signal values in the second column.

times_values = [num_in_queue.time, num_in_queue.signals.values]

The output below reflects the Time-Based Entity Generator block’s constant
intergeneration time of 0.8 second and the Single Server block’s constant
service time of 1.1 second.

times_values =

0 0
0.8000 1.0000
1.1000 0
1.6000 1.0000

3-23

3 Working with Signals

2.2000 0
2.4000 1.0000
3.2000 2.0000
3.3000 1.0000
4.0000 2.0000
4.4000 1.0000
4.8000 2.0000
5.5000 1.0000
5.6000 2.0000
6.4000 3.0000
6.6000 2.0000
7.2000 3.0000
7.7000 2.0000
8.0000 3.0000
8.8000 4.0000
8.8000 3.0000
9.6000 4.0000
9.9000 3.0000

From the output, you can see that the number of entities in the queue
increases at times that are a multiple of 0.8, and decreases at times that are a
multiple of 1.1. At T=8.8, a departure from the server and an entity generation
occur simultaneously; both events influence the number of entities in the
queue. The output below shows two values corresponding to T=8.8, enabling
you to see the zero-duration value that the signal assumes at this time.

Using the To Workspace Block with Event-Based
Signals
The To Workspace block in the Simulink Sinks library can be useful for
working with event-based signals in special ways, such as

• Omitting repeated values of the signal and focusing on changes in the
signal’s value. For an example, see “Example: Sending Unrepeated Data to
the MATLAB Workspace” on page 8-21.

• Recording values of multiple signals when any one of the signals has
an update. To accomplish this, place multiple To Workspace blocks in a
discrete event subsystem that has multiple input ports.

3-24

Sending Data to the MATLAB Workspace

If you use the To Workspace block in the Simulink Sinks library to write
event-based signals to the MATLAB workspace, you should

1 Set the block’s Save format parameter to Structure With Time, which
causes the block to record time values, not just signal values.

2 Place the To Workspace block in a discrete event subsystem to ensure
that the workspace variable records data at appropriate times during the
simulation.

For more details about discrete event subsystems, see “Role of Discrete Event
Subsystems in SimEvents Models” on page 8-7.

3-25

3 Working with Signals

3-26

4

Modeling Queues and
Servers

The topics below supplement the discussion in “Basic Queues and Servers” in
the Getting Started documentation.

Using a LIFO Queuing Discipline
(p. 4-2)

Comparing LIFO and FIFO queues

Sorting by Priority (p. 4-5) Using attribute values to control the
queue discipline

Preempting an Entity in a Server
(p. 4-10)

Enabling an entity to replace a
lower-priority entity in a server

Modeling Multiple Servers (p. 4-13) Modeling a bank of servers

Modeling the Failure of a Server
(p. 4-16)

Using Stateflow to model the
behavior of a server that might
require maintenance

4 Modeling Queues and Servers

Using a LIFO Queuing Discipline
The LIFO Queue block supports the last-in, first-out (LIFO) queuing
discipline. The entity that departs from the queue at a given time is the most
recent arrival. You can interpret a LIFO queue as a stack.

Some ways to see the difference between FIFO and LIFO queuing disciplines
are to

• Attach data to entities to distinguish entities from each other. For more
information about using entities to carry data, see “Setting Attributes of
Entities”.

• View simulation statistics that you expect the queuing discipline to
influence. One such statistic is the average waiting time in the queue; to
compute the waiting time of each entity, the block must know which entity
is departing at a given departure time.

Example: Waiting Time in LIFO Queue
As an example, compare the FIFO and LIFO disciplines in a D/D/1 queuing
system with an intergeneration time of 0.3 and a service time of 1.

4-2

Using a LIFO Queuing Discipline

4-3

4 Modeling Queues and Servers

4-4

Sorting by Priority

Sorting by Priority
The Priority Queue block supports queuing in which entities’ positions in
the queue are based primarily on their attribute values. Arrival times are
relevant only when attribute values are equal. You specify the attribute
and the sorting direction using the Sorting attribute name and Sorting
direction parameters in the block’s dialog box. To assign values of the
attribute for each entity, you can use the Set Attribute block as described in
“Setting Attributes of Entities” on page 1-11.

Note While you can view the value of the sorting attribute as an entity
priority, this value has nothing to do with event priorities or block priorities.

Two familiar cases are shown below, in which a priority queue acts like a
FIFO or LIFO queue. At the start of the simulation, the FIFO and LIFO
sections of the model each generate nine entities, the first of which advances
immediately to a server. The remaining entities stay in the queues until the
server becomes available. The sorting attribute is Count, whose values are
the entities’ arrival sequence at the queue block. In this example, the servers
do not permit preemption; preemptive servers would behave differently.

4-5

4 Modeling Queues and Servers

The FIFO plot reflects an increasing sequence of Count values. The LIFO plot
reflects a descending sequence of Count values, except for the Count=1 entity
that advances to the server before the queue has any other entities to sort.

Example: Serving Preferred Customers First
In the model below, two types of customers enter a queuing system. One type,
considered to be preferred customers, are less common but require longer
service. The priority queue places preferred customers ahead of nonpreferred
customers. The model plots the average system time for the set of preferred
customers and separately for the set of nonpreferred customers.

4-6

Sorting by Priority

You can see from the plots that despite the shorter service time, the average
system time for the nonpreferred customers is much longer than the average
system time for the preferred customers.

Average System Time for Nonpreferred Customers Sorted by Priority

4-7

4 Modeling Queues and Servers

Average System Time for Preferred Customers Sorted by Priority

Comparison with Unsorted Behavior
If the queue used a FIFO discipline for all customers instead of a priority
sorting, then the average system time would decrease slightly for the
nonpreferred customers and increase markedly for the preferred customers.

Average System Time for Nonpreferred Customers Unsorted

4-8

Sorting by Priority

Average System Time for Preferred Customers Unsorted

4-9

4 Modeling Queues and Servers

Preempting an Entity in a Server
The Single Server block supports preemption, which is the replacement of
an entity in a server block by an entity that satisfies certain criteria. The
preempted entity departs from the block via the P entity output port instead
of the usual OUT port.

Criteria for Preemption
Whether preemption occurs depends on attribute values of the entity in the
server and of the entity attempting to arrive at the server. You specify the
attribute and the orientation of the comparison using the Sorting attribute
name and Sorting direction parameters in the Single Server block’s dialog
box. (These parameters are available after you select Permit preemption
based on attribute.) To assign values of the sorting attribute for each entity,
you can use the Set Attribute block as described in “Setting Attributes of
Entities” on page 1-11. Valid values for the sorting attribute are any real
numbers, Inf, and -Inf.

If the attribute values are equal, no preemption occurs.

When preemption is supposed to occur, the P port must not be blocked.
Consider connecting the P port to a queue or server with infinite capacity, to
prevent a blockage during the simulation.

Note While you can view the value of the sorting attribute as an entity
priority, this value has nothing to do with event priorities or block priorities.

Residual Service Time
A preempted entity might or might not have completed its service time.
The remaining service time the entity would have required if it had not
been preempted is called the entity’s residual service time. If you select
Write residual service time to attribute in the Single Server block,
then the block records the residual service time of each preempted entity in
an attribute of that entity. If the entity completes its service time before
preemption occurs, then the residual service time is zero.

4-10

Preempting an Entity in a Server

The block does not record residual service time for entities that depart from
the block’s OUT entity output port (that is, entities that are not preempted).

Queuing Disciplines for Preemptive Servers
When you permit preemption in a Single Server block preceded by a queue,
only the entity at the head of the queue can preempt an entity in the server.

The Priority Queue block is particularly appropriate for use with the
preemption feature of the Single Server block. When an entity with
sufficiently high priority arrives at the Priority Queue block, the entity goes
to the head of the queue and immediately advances to the server.

When using the Single Server and Priority Queue blocks together, you
typically set the Sorting attribute name and Sorting direction
parameters to the same values in both blocks.

Example: Preemption by High-Priority Entities
The model below generates two classes of entities, most with an
EntityPriority attribute value of 0 and some with an EntityPriority
attribute value of -Inf. The sorting direction in the Priority Queue and Single
Server blocks is Ascending, so entities with sorting attribute values of -Inf
go to the head of the priority queue and immediately preempt any entity in
the server except another entity whose sorting attribute value is -Inf.

One plot shows when nonpreemptive departures occur, while another plot
indicates the residual service time whenever preemptive departures occur.

4-11

4 Modeling Queues and Servers

4-12

Modeling Multiple Servers

Modeling Multiple Servers
You can use the N-Server and Infinite Server blocks to model a bank of
identical servers operating in parallel. The N-Server block lets you specify
the number of servers using a parameter, while the Infinite Server block
models a bank of infinitely many servers.

To model multiple servers that are not identical to each other, you must use
multiple blocks. For example, to model a pair of servers whose service times
do not share the same distribution, use a pair of Single Server blocks rather
than a single N-Server block. The example in “Example: Selecting the First
Available Server” in the Getting Started documentation illustrates the use of
multiple Single Server blocks with a switch.

Example: M/M/5 Queuing System
The model below shows a system with infinite storage capacity and five
identical servers. In the notation, the M stands for Markovian; M/M/5 means
that the system has exponentially distributed interarrival and service times,
and five servers.

The plot below shows the waiting time in the queuing system.

4-13

4 Modeling Queues and Servers

You can compare the empirical values shown in the plot with the theoretical
value, E[S], of the mean system time for an M/M/m queuing system with an
arrival rate of λ=1/2 and a service rate of µ=1/5. Using expressions in [2],
the computation is as follows.

ρ λ
µ

π ρ ρ
ρ

= = =

= + +
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥

=

−

∑

m

m
n

m
m

n m

n

m

(/)
(/)

()
!

()
!

1 2
5 1 5

1
2

1
1

10
1

1

⎥⎥
≈

= +
−

≈

−1

0
2

0 0801

1 1

1
5 26

.

[]
()

! ()
.E S

m
m m

m

µ µ
ρ π

ρ

Zooming in the plot shows that the empirical value is close to 5.26.

4-14

Modeling Multiple Servers

4-15

4 Modeling Queues and Servers

Modeling the Failure of a Server
In some applications, it is useful to model situations in which a server fails.
For example, a machine might break down and later be repaired, or a network
connection might fail and later be restored. This section explores ways to
model failure of a server, as well as server states. The topics are as follows:

• “Server States” on page 4-16

• “Using a Gate to Implement a Failure State” on page 4-16

• “Using Stateflow to Implement a Failure State” on page 4-17

Server States
The server blocks in SimEvents do not have built-in states, so you can design
states in any way that is appropriate for your application. Some examples of
possible server states are in the table below.

Server as
Communication
Channel

Server as Machine Server as Human
Processor

Transmitting message Processing part Working

Connected but idle Waiting for new part to
arrive

Waiting for work

Unconnected Off Off duty

Holding message
(pending availability of
destination)

Holding part (pending
availability of next
operator)

Waiting for resource

Establishing connection Warming up Preparing to begin work

Using a Gate to Implement a Failure State
For any state that represents a server’s inability or refusal to accept
entity arrivals even though the server is not necessarily full, a common
implementation involves an Enabled Gate block preceding the server.

4-16

Modeling the Failure of a Server

The gate prevents entity access to the server whenever the gate’s control
signal at the en input port is zero or negative. The logic that creates the en
signal determines whether or not the server is in a failure state. You can
implement such logic using the techniques described in Chapter 6, “Using
Logic” or using Stateflow to transition among a finite number of server states.

For an example in which an Enabled Gate block precedes a server, see
“Example: Controlling Joint Availability of Two Servers” on page 7-4. The
example is not specifically about a failure state, but the idea of controlling
access to a server is similar. Also, you can interpret the Signal Latch block
with the st output signal enabled as a two-state machine that changes state
when read and write events occur.

Note A gate prevents new entities from arriving at the server but does not
prevent the current entity from completing its service. If you want to eject
the current entity from the server upon a failure occurrence, then you can
use the preemption feature of the server to replace the current entity with
a high-priority “placeholder” entity.

Using Stateflow to Implement a Failure State
Stateflow is a suitable tool for implementing transitions among a finite
number of server states. If you need to support more than just two states,
then a Stateflow block might be more natural than a combination of Enabled
Gate and logic blocks.

When modeling interactions between the state chart and discrete-event
aspects of the model, note that a function call is the recommended way to
make Stateflow blocks respond to asynchronous state changes. You can use
blocks in the Event Generators and Event Translation libraries to produce
a function call upon signal-based events or entity departures; the function
call can invoke a Stateflow block. Conversely, a Stateflow block can output a

4-17

4 Modeling Queues and Servers

function call that can cause a gate to open, an entity counter to reset, or an
entity generator to generate a new entity.

Example: Failure and Repair of a Server
The model below uses a Stateflow block to describe a two-state machine. A
server is either down (failed) or up (operable). The state of the server is an
output signal from the Stateflow block and is used to create the enabling
signal for an Enabled Gate block that precedes a server in a queuing system.

The lower portion of the model contains a parallel queuing system. The
entities in the lower queuing system represent failures, not customers.
Generation of a failure entity represents a failure occurrence in the upper
queuing system. Service of a failure entity represents the time during which
the server in the upper queuing system is down. Completion of service of a
failure entity represents a return to operability of the upper queuing system.

When the lower queuing system generates an entity, changes in its server’s
#n signal invoke the Stateflow block that determines the state of the upper

4-18

Modeling the Failure of a Server

queuing system. Increases in the #n signal cause the server to go down, while
decreases cause the server to become operable again.

While this simulation runs, Stateflow alternately highlights the up and down
states. The plot showing entity departures from the upper queuing system
shows gaps, during which the server is down.

Although this two-state machine could be modeled more concisely with a
Signal Latch block instead of a Stateflow block, the Stateflow chart scales
more easily to include additional states or other complexity.

4-19

4 Modeling Queues and Servers

Example: Adding a Warmup Phase
The model below modifies the one in “Example: Failure and Repair of a
Server” on page 4-18 by adding a warmup phase after the repair is complete.
The Enabled Gate block in the upper queuing system does not open until the
repair and the warmup phase are complete. In the lower queuing system, an
additional Single Server block represents the duration of the warmup phase.

In the Stateflow block, the input function calls controls when the repair
operation starts, when it ends, and when the warmup is complete. The result
of the function-call event depends on the state of the chart when the event
occurs. A rising edge of the Repair Work block’s #n signal starts the repair
operation, a falling edge of the same signal ends the repair operation, and a
falling edge of the Warmup block’s #n signal completes the warmup.

4-20

Modeling the Failure of a Server

While this simulation runs, Stateflow alternates among the three states. The
plot showing entity departures from the upper queuing system shows gaps,
during which the server is either under repair or warming up. By comparing
the plot to the one in “Example: Failure and Repair of a Server” on page
4-18, you can see that the gaps in the server’s operation last slightly longer.
This is because of the warmup phase.

4-21

4 Modeling Queues and Servers

4-22

5

Routing Techniques

The topics below supplement the discussion in “Designing Paths for Entities”
in the Getting Started documentation by providing examples of cascaded
switch blocks.

Example: Cascaded Switches with
Random Selections (p. 5-2)

Equiprobable switching using
cascaded switch blocks

Example: Cascaded Switches with
Round-Robin Sequence (p. 5-4)

Round-robin switching using
cascaded switch blocks

Example: Compound Switching
Logic (p. 5-5)

Combination of round-robin and
weighed random switching

5 Routing Techniques

Example: Cascaded Switches with Random Selections
The Input Switch and Output Switch blocks support random selection of ports
via the Equiprobable switching criterion. You can cascade multiple switch
blocks to form a composite switching component with equiprobable outcomes.

Six-Way Switching Component
Suppose you want to form a six-way switching component and that it is useful
to know whether each entity uses one of the first three entity paths as opposed
to one of the last three entity paths. The example below uses three Output
Switch blocks to form a six-way switching component. Each Output Switch
block has its Switching criterion set to Equiprobable. The last signal
output port on the first switch block provides a way to find out whether each
entity uses one of the first three or last three entity paths.

Five-Way Switching Component
Suppose you want to form a five-way switching component in which each of the
five entity paths has equal probability of being selected. You cannot imitate
the technique used in “Six-Way Switching Component” on page 5-2 because
five is a prime number. Instead, use a skewed probability distribution in the
first Output Switch block’s switching criterion to compensate for the unequal
numbers of entity output ports in the subsequent two Output Switch blocks.

5-2

Example: Cascaded Switches with Random Selections

5-3

5 Routing Techniques

Example: Cascaded Switches with Round-Robin Sequence
Suppose you want to form an eight-way switching component using a
round-robin switching criterion. For simplicity, the example below uses a
constant intergeneration time between entities so that counting time steps
is equivalent to counting entities. The first Output Switch block changes
its selected port every four time steps, while the subsequent Output Switch
blocks change their selected ports with every entity. The result of this cascade
is a round-robin sequence among the entity output ports of the subsequent
Output Switch blocks.

5-4

Example: Compound Switching Logic

Example: Compound Switching Logic
Suppose a single server processes entities from two groups each consisting
of three sources. The switching component between the entity sources and
the server determines which entities proceed to the server whenever it is
available. The switching component uses a distribution that is skewed toward
entities from the first group. Within each group, the switching component
uses a round-robin approach.

The example below shows how to implement this design using three Input
Switch blocks. The first two Input Switch blocks have their Switching
criterion parameter set to Round robin to represent the processing of
entities within each group of entity sources. The last Input Switch block uses
a random signal with a skewed probability distribution to choose between the
two groups. The Signal Latch block causes the random number generator to
draw a new random number after each departure from the last Input Switch
block.

5-5

5 Routing Techniques

For tracking purposes, the model assigns an attribute to each entity based
on its source. The attribute values are 1, 2, and 3 for entities in the first
group and -1, -2, and -3 for entities in the second group. You can see from
the plot below that negative values occur less frequently than positive
values, reflecting the skewed probability distribution. You can also see that
the positive values reflect a round-robin approach among servers in the top
group, while negative values reflect a round-robin approach among servers
in the bottom group.

5-6

Example: Compound Switching Logic

5-7

5 Routing Techniques

5-8

6

Using Logic

Role of Logic in SimEvents Models
(p. 6-2)

Typical situations in which logic
affects simulation behavior

Using Logic Blocks (p. 6-3) Specifying logic using a block
diagram

6 Using Logic

Role of Logic in SimEvents Models
Logic can be an important component in a discrete-event simulation, for
specifying

• Normal but potentially complex routing or gating behavior.

For example, you might want to model a multiple-queue system in which
entities advance to the shortest queue. Such a model must also indicate
what happens if the minimum length is not unique.

• Handling of overflows, blockages, and other special cases.

For example, a communication system might drop packets that overflow a
queue, while a manufacturing assembly line might pause processing at one
machine if it releases parts that overflow a second machine.

6-2

Using Logic Blocks

Using Logic Blocks
The following blocks can be useful for modeling logic because they return
a 0 or 1:

• Relational Operator

• Compare To Constant and Compare To Zero

• Interval Test and Interval Test Dynamic

• Detect Change, Detect Decrease, Detect Increase, etc.

• Signal Latch

Note Some blocks return a 0 or 1 of a Boolean or integer data type. Blocks in
the SimEvents libraries process signals whose data type is double. To convert
between data types, use the Data Type Conversion block in the Simulink
Signal Attributes library.

For switching, you might need to compute an integer that indicates a port
number. Here are some useful blocks for this situation:

• Switch

• Lookup Table

• Bias

• Rounding Function, if an earlier computation returns a noninteger

• Other blocks in the Math Operations library

See these examples:

• “Example: Using Servers in Shifts” on page 6-4

• The logic diagrams depicted in “Stopping Upon Reaching a Particular
State” on page 10-22

• The gate examples, especially “Example: Controlling Joint Availability
of Two Servers” on page 7-4

6-3

6 Using Logic

Example: Using Servers in Shifts
Suppose you have four servers that operate in mutually exclusive shifts
of unequal lengths, and you want to direct each entity to the server that is
currently on duty. Suppose that the server on duty has the following index
between 1 and 4:

Index

between midnight and 4 A.M.
between 4 A.M. and noon

=

1
2
33
4

between noon and 8 P.M.
between 8 P.M. and midnight

⎧

⎨
⎪⎪

⎩
⎪⎪
⎪

Below are two methods of computing this index in a subsystem. One method
uses both logical and numerical blocks, while the other method is purely
numerical.

Index Computation 1
You can compute the index of the server on duty using a subsystem like
the one shown below, where the Interval Test blocks use Lower limit and
Upper limit parameter values that represent the start and end of each shift
in each 24-hour day.

6-4

Using Logic Blocks

For example, the second shift is represented by the second Interval Test block,
whose dialog box is shown below.

Index Computation 2
Alternatively, you can compute the index of the server on duty using a
subsystem like the one shown below, where each Pulse Generator block
assumes the corresponding index value when that server is on duty, and
assumes the value 0 at other times. In particular,

• Period = 60*60*24 for all Pulse Generator blocks, to represent a daily
cycle in seconds

• Amplitude gives the index for each server, between 1 and 4

• Pulse width gives the length of each server’s shift

• Phase delay gives the starting time of each server’s shift

6-5

6 Using Logic

For example, the second shift is represented by the second Pulse Generator
block, whose dialog box is shown below.

6-6

Using Logic Blocks

Top Level of the Model
The figure below shows how you can integrate either kind of index
computation, contained in a subsystem, into a larger model. It is similar to
the example in “Example: Choosing the Shortest Queue” on page 6-8 except
that this example uses different switching logic that does not depend on
feedback from the queues. The subsystem in this model is a virtual subsystem
used for visual simplicity, not a discrete event subsystem.

6-7

6 Using Logic

The figure below shows a sample plot, which reflects the use of shifts. Each
plotting marker corresponds to an entity departing from the switch block via
one of the four entity output ports.

Example: Choosing the Shortest Queue
The model below directs entities to the shortest of three queues. It uses an
Output Switch block to create the paths to the different queues. To implement
the choice of the shortest queue, a discrete event subsystem queries each
queue for its current length, determines which queue or queues achieve the
minimum length, and provides that information to the Output Switch block.

6-8

Using Logic Blocks

For simplicity, the model omits any further processing of the entities after
they leave their respective queues.

Although the block diagram shows signals at the #n signal output ports
from the queue blocks and another signal at the p signal input port of the
switch block, the block diagram does not indicate how to compute p from
the set of #n values. That computation is performed inside a discrete event
subsystem shown below. If more than one queue achieves the minimum,
then the computation returns the smallest index among the queues that
minimize the length.

6-9

6 Using Logic

Note For visual simplicity, the model uses Goto and From blocks to connect
the #n signals to the computation.

The figure below shows a sample plot. Each plotting marker corresponds to an
entity departing from the switch block via one of the three entity output ports.

6-10

Using Logic Blocks

6-11

6 Using Logic

6-12

7

Regulating Arrivals Using
Gates

Role of Gates in SimEvents Models
(p. 7-2)

What gates represent in various
models

Keeping a Gate Open Over a Time
Interval (p. 7-4)

Admitting entities during a time
interval of arbitrary length

Opening a Gate Instantaneously
(p. 7-6)

Admitting an entity when an event
occurs

Using Logical Combinations of Gates
(p. 7-9)

Implementing compound logic for
entity admission

7 Regulating Arrivals Using Gates

Role of Gates in SimEvents Models
By design, certain blocks change their availability to arriving entities
depending on the circumstances. For example,

• A queue or server accepts arriving entities as long as it is not already full
to capacity.

• An input switch accepts an arriving entity through a single selected entity
input port but forbids arrivals through other entity input ports.

Some applications require more control over whether and when entities
advance from one block to the next. A gate provides flexible control via its
changing status as either open or closed: by definition, an open gate permits
entity arrivals as long as the entities would be able to advance immediately to
the next block, while a closed gate forbids entity arrivals. You configure the
gate so that it opens and closes under circumstances that are meaningful in
your model.

For example, you might use a gate

• To create periods of unavailability of a server. For example, you might be
simulating a manufacturing scenario over a monthlong period, where a
server represents a machine that runs only 10 hours per day. An enabled
gate can precede the server, to make the server’s availability contingent
upon the time.

To learn about enabled gates, which can remain open for a time interval
of nonzero length, see “Keeping a Gate Open Over a Time Interval” on
page 7-4.

• To make departures from one queue contingent upon departures from a
second queue. A release gate can follow the first queue. The gate’s control
signal determines when the gate opens, based on decreases in the number
of entities in the second queue.

To learn about release gates, which open and then close in the same time
instant, see “Opening a Gate Instantaneously” on page 7-6.

• With the First port that is not blocked mode of the Output Switch
block. Suppose each entity output port of the switch block is followed by a

7-2

Role of Gates in SimEvents Models

gate block. An entity attempts to advance via the first gate; if it is closed,
then the entity attempts to advance via the second gate, and so on.

This arrangement is explored in “Using Logical Combinations of Gates”
on page 7-9.

To learn about implementing logic that determines when a gate is open or
closed, see Chapter 6, “Using Logic”.

Accessing Gate Blocks
The gate blocks reside in the Gates library of SimEvents.

A gate block forbids or permits entities to advance from the block before
the gate to the block after the gate. For example, if you want to control
advancement from a queue to a server, then place the gate block after the
queue and before the server. Many models follow a gate with a storage block,
such as a queue or server.

Types of Gates
The Gates library offers these fundamentally different kinds of gate blocks:

• The Enabled Gate block, which uses a control signal to determine time
intervals over which the gate is open or closed. For more information, see
“Keeping a Gate Open Over a Time Interval” on page 7-4.

• The Release Gate block, which uses a control signal to determine a discrete
set of times at which the gate is instantaneously open. The gate is closed at
all other times during the simulation. For more information, see “Opening
a Gate Instantaneously” on page 7-6.

7-3

7 Regulating Arrivals Using Gates

Keeping a Gate Open Over a Time Interval
The Enabled Gate block uses a control signal at the input port labeled en to
determine when the gate is open or closed:

• When the en signal is positive, the gate is open and an entity can arrive as
long as it would be able to advance immediately to the next block.

• When the en signal is zero or negative, the gate is closed and no entity
can arrive.

Because the en signal can remain positive for a time interval of arbitrary
length, an enabled gate can remain open for a time interval of arbitrary
length. The length can be zero or a positive number.

Depending on your application, the en signal can arise from time-driven
dynamics, state-driven dynamics, a SimEvents block’s statistical output
signal, or a computation involving various types of signals.

Example: Controlling Joint Availability of Two
Servers
Suppose that each entity undergoes two processes, one at a time, and that
the first process does not start if the second process is still in progress for the
previous entity. Assume for this example that it is preferable to model the
two processes using two Single Server blocks in series rather than one Single
Server block whose service time is the sum of the two individual processing
times; for example, you might find a two-block solution more intuitive or you
might want to access the two Single Server blocks’ utilization output signals
independently in another part of the model.

If you connect a queue, a server, and another server in series, then the first
server can start serving a new entity while the second server is still serving
the previous entity. This does not accomplish the stated goal. The model
needs a gate to prevent the first server from accepting an entity too soon, that
is, while the second server still holds the previous entity.

One way to implement this is to precede the first Single Server block with
an Enabled Gate block that is configured so that the gate is closed when an
entity is in either server. In particular, the gate

7-4

Keeping a Gate Open Over a Time Interval

• Is open from the beginning of the simulation until the first entity’s
departure from the gate

• Closes whenever an entity advances from the gate to the first server, that
is, when the gate block’s #d output signal increases

• Reopens whenever that entity departs from the second server, that is, when
the second server block’s #d output signal increases

This arrangement is shown below.

The Signal Latch block’s st output signal becomes 0 when the block’s rvc
input signal increases and becomes 1 when the wvc input signal increases.
That is, the st signal becomes 0 when an entity departs from the gate and
becomes 1 when an entity departs from the second server. The block labeled
Open Gate at Start of Simulation is another Signal Latch block; its purpose
is to modify the st signal only by defining an initial condition of 1 (using the
technique described in “Defining Initial Conditions for Event-Based Signals”
on page 3-18). In summary, the entity at the head of the queue advances to
the first Single Server block if and only if both servers are empty.

7-5

7 Regulating Arrivals Using Gates

Opening a Gate Instantaneously
The Release Gate block opens instantaneously at a discrete set of times
during the simulation and is closed at all other times. The gate opens when a
signal-based event or a function call occurs. By definition, the gate’s opening
permits one pending entity to arrive if able to advance immediately to the next
block. No simulation time passes between the opening and subsequent closing
of the gate; that is, the gate opens and then closes in the same time instant. If
no entity is already pending when the gate opens, then the gate closes without
processing any entities. It is possible for the gate to open multiple times in a
fixed time instant, if multiple gate-opening events occur in that time instant.

An entity passing through a gate must already be pending before the
gate-opening event occurs. Suppose a Release Gate block follows a Single
Server block and a gate-opening event is scheduled simultaneously with a
service completion event. If the gate-opening event is processed first, then
the gate opens and closes before the entity completes its service, so the entity
does not pass through the gate at that time instant. If the service completion
is processed first, then the entity is already pending before the gate-opening
event is processed, so the entity passes through the gate at that time instant.
To learn more about the processing sequence for simultaneous events, see
“Setting Event Priorities” on page 2-19.

Example: Synchronizing Service Start Times with the
Clock
In the example below, a Release Gate block with an input signal from a Pulse
Generator block ensures that entities begin their service only at fixed time
steps of 1 second, even though the entities arrive asynchronously. In this
example, the Release Gate block has Open gate upon set to Change in
signal from port vc and Type of change in signal value set to Rising,
while the Pulse Generator block has Period set to 1. (Alternatively, you could
set Open gate upon to Trigger from port tr and Trigger type to Rising.)

7-6

Opening a Gate Instantaneously

The plots below show that the entity generation times can be noninteger
values, but the service beginning times are always integers.

Example: Opening a Gate Upon Entity Departures
In the model below, two queue-server pairs operate in parallel and an entity
departs from the top queue only in response to a departure from the bottom
queue. In particular, departures from the bottom queue block cause the Entity
Departure Event to Function-Call Event block to issue a function call, which
in turn causes the gate to open. The Release Gate block in this model has the
Open gate upon parameter set to Function call from port fcn.

7-7

7 Regulating Arrivals Using Gates

If the top queue in the model is empty when the bottom queue has a
departure, then the gate opens but no entity arrives there.

When configuring a gate to open based on entity departures, be sure the logic
matches your intentions. For example, when looking at the model shown
above, you might assume that entities advance through the queue-server
pairs during the simulation. However, if the Output Switch block is configured
to select the first entity output port that is not blocked, and if the top queue
has a large capacity relative to the number of entities generated during the
simulation duration, then you might find that all entities advance to the
top queue, not the bottom queue. As a result, no entities depart from the
bottom queue and the gate never opens to permit entities to depart from the
top queue. By contrast, if the Output Switch block is configured to select
randomly between the two entity output ports, then it is likely that some
entities reach the servers as expected.

Alternative Using Value Change Events
An alternative to opening the gate upon departures from the bottom queue
is to open the gate upon changes in the value of the #d signal output from
that queue block. The #d signal represents the number of entities that have
departed from that block, so changes in the value are equivalent to entity
departures. To implement this approach, set the Release Gate block’s Open
gate upon parameter to Change in signal from port vc and connect the
vc port to the queue block’s #d output signal.

7-8

Using Logical Combinations of Gates

Using Logical Combinations of Gates
You can use multiple gate blocks in combination with each other:

• Using a Release Gate block and/or one or more Enabled Gate blocks in
series is equivalent to a logical AND of their gate-opening criteria. For an
entity to pass through the gates, they must all be open at the same time.

Note You should not connect two Release Gate blocks in series. No entities
would ever pass through such a series of gates because each gate closes
before the other gate opens, even if the gate-opening events occur at the
same value of the simulation clock.

• Using multiple gate blocks in parallel, you can implement a logical OR of
their gate-opening criteria. Use the Output Switch and Path Combiner
blocks as in the figure below and set the Output Switch block’s Switching
criterion parameter to First port that is not blocked.

Each entity attempts to arrive at the first gate; if it is closed, the entity
attempts to arrive at the second gate, and so on. If all gates are closed,
then the Output Switch block’s entity input port is unavailable and the
entity must stay in a preceding block (such as a queue or server preceding
the switch).

7-9

7 Regulating Arrivals Using Gates

Note The figure above uses two Release Gate blocks and one Enabled
Gate block, but you can use whatever combination is suitable for the logic
of your application and whatever sequence you prefer. Also, the figure
above omits the control signals (vc and en) for visual clarity but in your
model these ports must be connected.

If you expect gate-opening or gate-closing events for different gates to occur
at the same time, then consider the sequence of events. For example, if you
connect an Enabled Gate block to a Release Gate block in series and the
enabled gate closes at the same time instant that the release gate opens,
then the sequence of events matters. If the gate-closing event is processed
first, then a pending entity cannot pass through the gates at that time; if
the gate-opening event is processed first, then a pending entity can pass
through the gates before the gate-closing event is processed. To control the
sequence, select the Specify event priority... parameters in the gate blocks
and specify appropriate Event priority parameters. For details, see “Setting
Event Priorities” on page 2-19.

Example: First Entity as a Special Case
This example illustrates the use of a Release Gate block and an Enabled Gate
block connected in parallel. The Release Gate block permits the arrival of the
first entity of the simulation, which receives special treatment, while the
Enabled Gate block permits entity arrivals during the rest of the simulation.
In this example, a warmup period at the beginning of the simulation precedes
normal processing.

7-10

Using Logical Combinations of Gates

The Release Gate block is open precisely when the #d output signal from the
Time-Based Entity Generator block rises from 0 to 1. That is, the gate is open
for the first entity of the simulation and no other entities. The first entity
arrives at an Infinite Server block, which represents the warmup period.

Subsequent entities find the Release Gate block’s entity input port
unavailable, so they attempt to arrive at the Enabled Gate block. The Enabled
Gate block is open during the entire simulation, except when the first entity
has not yet departed from the Infinite Server block. This logic is necessary
to prevent the second entity from jumping ahead of the first entity before
the warmup period is over.

The Path Combiner block merges the two entity paths, removing the
distinction between them. Subsequent processing depends on your
application; this model merely uses a queue-server pair as an example.

The plot below shows which path each entity takes during the simulation. The
plot shows that the first entity advances from the first (path=1) entity output
port of the Output Switch block to the Release Gate block, while subsequent
entities advance from the second (path=2) entity output port of the Output
Switch block to the Enabled Gate block.

7-11

7 Regulating Arrivals Using Gates

7-12

8

Controlling Timing Using
Subsystems

Timing Issues in SimEvents Models
(p. 8-2)

Understanding timing in situations
where time-based and event-based
behavior interact

Role of Discrete Event Subsystems
in SimEvents Models (p. 8-7)

Overview of discrete event
subsystems as a way to ensure
appropriate simulation timing

Blocks Inside Discrete Event
Subsystems (p. 8-10)

Blocks that are suitable for use in a
discrete event subsystem

Working with Discrete Event
Subsystem Blocks (p. 8-11)

Setting up and configuring Discrete
Event Subsystem blocks

Examples Using Discrete Event
Subsystem Blocks (p. 8-16)

Examples of situations in which
discrete event subsystems are useful

Creating Entity-Departure
Subsystems (p. 8-26)

How to call a subsystem when an
entity departs from a block

Examples Using Entity-Departure
Subsystems (p. 8-29)

Examples of situations in which
entity-departure subsystems are
useful

Using Function-Call Subsystems
(p. 8-32)

Using the Function-Call Subsystem
block in SimEvents models

8 Controlling Timing Using Subsystems

Timing Issues in SimEvents Models
Most SimEvents models contain one or more inherently time-based blocks
from the Simulink libraries, in addition to inherently event-based blocks
from the SimEvents libraries. When time-based and event-based behavior
combine in one model, it is important to use correct modeling techniques to
ensure correct timing in the simulation.

When you combine time-based and event-based blocks, consider whether you
want the operation of a time-based block to depend only on time-oriented
considerations or whether you want the time-based block to respond to events.
The following example scenarios illustrate the difference:

• “Timing for the End of the Simulation” on page 8-2

• “Timing for a Statistical Computation” on page 8-3

• “Timing for Choosing a Port Using a Sequence” on page 8-4

The section “Role of Discrete Event Subsystems in SimEvents Models” on
page 8-7 introduces the discrete event subsystem, an important modeling
construct that you can use to make time-based blocks respond to events.

Timing for the End of the Simulation
Consider a queuing model in which you want to end the simulation precisely
when the number of entities in the queue first equals or exceeds some
threshold value. One way to model the constraint is to use the Compare To
Constant block to check whether the queue length is greater than or equal
to the threshold value and the Stop Simulation block to end the simulation
whenever the comparison is true.

The queue length is an optional output from the FIFO Queue block from the
signal output port labeled #n.

8-2

Timing Issues in SimEvents Models

Time-Based Default Behavior
Connecting the #n signal directly to the signal input port of the Compare To
Constant block looks correct topologically. However, that would not cause
the simulation to stop at the exact moment when the #n signal reaches or
exceeds the threshold for the first time. Instead, it would cause the simulation
to stop upon the next time step for the time-based Compare To Constant
and Stop Simulation blocks, which could be at a later time. The #n signal
experiences a change in value based on an event, at a time that is unrelated
to the time-based simulation clock, whereas Simulink defaults to time-based
behavior for most blocks.

Achieving Correct Event-Based Behavior
The correct way to cause the simulation to stop at the exact moment when the
#n signal reaches or exceeds the threshold for the first time is to construct the
model so that the Compare To Constant and Stop Simulation blocks respond
to events, not the time-based simulation clock. Put these blocks inside a
discrete event subsystem that is executed at exactly those times when the
FIFO Queue block’s #n signal increases from one integer to another.

For details on this solution, see “Example: Ending the Simulation Upon an
Event” on page 8-20.

Timing for a Statistical Computation
Suppose that you want to compute the total length of time for which the queue
length equals or exceeds a threshold value during the simulation. A symbolic
expression for this computation is

f T I t dtn
T

() ()#= ≥∫ 30

where T is the total length of the simulation, #n is the instantaneous queue
length, the threshold is three entities, and I is an indicator function defined by

8-3

8 Controlling Timing Using Subsystems

I t
n t

n# ()
()

≥ =
≥⎧

⎨
⎩

3
1 3
0

if
otherwise

You can use the optional #n signal output port from the FIFO Queue block
to produce the queue length signal, and the Compare To Constant block to
implement the indicator function. You can connect the resulting signal to an
integrator block.

Time-Based Integration
The Integrator and Discrete-Time Integrator blocks in the Simulink libraries
are inherently time-based. In this example, you are integrating a signal that
experiences asynchronous discontinuities. A discrete-time integrator with an
explicit sample time yields incorrect results because a discontinuity might
occur between successive sample time values. A continuous-time integrator
can make the simulation clock adjust to detected discontinuities in the signal,
yet it is still possible for asynchronous discontinuities to go undetected by the
time-based simulation clock.

Some applications require time-based integration, but this application
requires that the integration respond to events that change the value of the
#n signal.

Achieving Correct Event-Based Behavior
To make the Compare To Constant and integrator blocks respond to events,
not the time-based simulation clock, you can put these blocks inside a discrete
event subsystem that is executed at exactly those times when the FIFO Queue
block’s #n signal increases from one integer to another. This solution causes
the simulation to compute the indicator function correctly, which results in a
correct value for the statistic.

For details on this solution, see “Example: Using Event-Based Timing for a
Statistical Computation” on page 8-19.

Timing for Choosing a Port Using a Sequence
Consider an Output Switch block that directs each arriving entity to one of
three entity output ports, depending on the value of an input signal.

8-4

Timing Issues in SimEvents Models

Suppose a Repeating Sequence Stair block generates the input signal by
cycling through the values 3, 2, and 1 throughout the simulation.

So far, this description does not indicate when the Repeating Sequence Stair
block changes its value. Here are some possibilities:

• It chooses a new value from the repeating sequence at regular time
intervals, which might be appropriate if the switch is intended to select
among three operators who work in mutually exclusive shifts in time.

You can specify the time interval in the Repeating Sequence Stair block’s
Sample time parameter.

• It chooses a new value from the repeating sequence whenever an entity
arrives at the Output Switch block, which might be appropriate if the
switch is intended to distribute a load fairly among three operators who
work in parallel.

To make the Repeating Sequence Stair block respond to entity advancement
events, not the time-based simulation clock, you can put these blocks
inside an appropriately configured function-call subsystem, as discussed in
“Creating Entity-Departure Subsystems” on page 8-26.

For details on this approach, see “Example: Using Entity-Based Timing
for Choosing a Port” on page 8-29.

These possibilities correspond to qualitatively different interpretations of the
model as well as quantitatively different results. If the Output Switch block
reports the index of its last selected entity output port (that is, the entity
output port through which the most recent entity departure occurred), then a

8-5

8 Controlling Timing Using Subsystems

plot of this statistic against time looks quite different depending on the timing
of the Repeating Sequence Stair block’s operation. Sample plots are below.

Departure Port Changes with Time

Departure Port Changes with Each Entity

8-6

Role of Discrete Event Subsystems in SimEvents Models

Role of Discrete Event Subsystems in SimEvents Models
Given the questions raised in “Timing Issues in SimEvents Models” on page
8-2 about the response of time-based blocks to events, this section gives an
overview of discrete event subsystems and describes how you can use them to
ensure appropriate simulation timing. A discrete event subsystem

• Contains time-based blocks. Examples include

- Constant with a sample time of inf

- Sum or Relational Operator with a sample time of -1

- Stop Simulation

• Cannot contain blocks from the SimEvents libraries, except the Discrete
Event Inport, Discrete Event Outport, and Subsystem Configuration blocks

Note If you want to put blocks that have entity ports into a subsystem as
a way to group related blocks or to make a large model more hierarchical,
then use an ordinary Subsystem block from the Simulink Ports &
Subsystems library. In this case, the use of a subsystem does not affect
the timing of the simulation.

• Has two basic forms: a Discrete Event Subsystem block and an
appropriately configured Function-Call Subsystem block.

• Is executed in response to signal-based events that you specify in the
Discrete Event Inport blocks inside the Discrete Event Subsystem window,
or in response to function calls in the case of a function-call subsystem.

“Block execution” in this documentation is shorthand for “block methods
execution.” Methods are functions that Simulink uses to solve a model.
Blocks are made up of multiple methods. For details, see “Block Methods”
in the Simulink documentation.

Purpose of Discrete Event Subsystems
The purpose of a discrete event subsystem is to call the blocks in the
subsystem at the exact time of each qualifying event and not at times

8-7

8 Controlling Timing Using Subsystems

suggested by the time-based simulation clock. This is an important change in
the semantics of the model, not merely an optimization.

Processing Sequence for Events in Discrete Event
Subsystems
When creating a discrete event subsystem, you might need to confirm or
manipulate the processing sequence for two or more events, such as

• Signal-based events that execute a Discrete Event Subsystem block

• Entity departures that execute an entity-departure subsystem

• Function calls that execute a function-call subsystem

• Updates in the values of signals that serve as inputs to any kind of discrete
event subsystem

Consider the schematic below involving a discrete event subsystem. Suppose
an entity departure from Block A, an entity arrival at Block C, and updates in
all of the signals occur at a given value of the simulation clock.

Typically, the goal is to execute the subsystem

• After the entity departure from Block A, which produces a signal that is
an input to the subsystem.

• After both Block A and Block B update their output signals at that value of
the simulation clock.

Be especially aware of this if you clear the Execute subsystem upon
signal-based events option in a Discrete Event Inport block. Because the

8-8

Role of Discrete Event Subsystems in SimEvents Models

subsystem uses the most recent value of the signal, you should make sure
that value is up to date, rather than a value from a previous call to the
block that creates the signal.

See “Example: Detecting Changes from Empty to Nonempty” on page 8-23
for an example in which the last-updated signal executes the subsystem.
See “Sequence of Updates of Output Signals” on page 3-10 to learn more
about when blocks update their output signals.

• Before the entity arrival at Block C, which uses an output signal from the
subsystem. “Example: Normalizing a Statistic to Use for Routing” on page
8-17 shows how an extra server block whose service time is zero can help
produce the correct processing sequence.

For details on processing sequences, see “Interleaved Operations of Storage
and Nonstorage Blocks” on page 12-4 and “Processing Sequence for
Simultaneous Events” on page 2-21.

8-9

8 Controlling Timing Using Subsystems

Blocks Inside Discrete Event Subsystems
The only blocks that are suitable for use in a discrete event subsystem are

• Blocks having a Sample time parameter of -1, which indicates that the
sample time is inherited from the driving block.

• Blocks that always inherit a sample time from the driving block, such as the
Bias block or the Unary Minus block. To determine whether a block in one
of the Simulink libraries inherits its sample time from the driving block, see
the “Characteristics” table near the end of the block’s online reference page.

• Blocks whose outputs cannot change from their initial values during a
simulation. For more information, see “Constant Sample Time” in the
Simulink documentation.

Types of blocks that are not suitable for use in a discrete event subsystem
include

• Continuous-time blocks

• Discrete-time blocks with a Sample time parameter value that is positive
and finite

• Blocks from the SimEvents libraries, except the Discrete Event Inport,
Discrete Event Outport, and Subsystem Configuration blocks. In particular,
a discrete event subsystem cannot contain blocks that possess entity ports
or nested Discrete Event Subsystem blocks.

In some cases, you can work around these restrictions by entering a Sample
time parameter value of -1 and/or by finding a discrete-time analogue of a
continuous-time block. For example, instead of using the continuous-time
Clock block, use the discrete-time Digital Clock block with a Sample time
parameter value of -1.

8-10

Working with Discrete Event Subsystem Blocks

Working with Discrete Event Subsystem Blocks
Building on the conceptual information in “Role of Discrete Event Subsystems
in SimEvents Models” on page 8-7, this section provides some practical
information to help you incorporate Discrete Event Subsystem blocks into
your SimEvents models. The topics are as follows:

• “Setting Up Signal-Based Discrete Event Subsystems” on page 8-11

• “Signal-Based Events That Control Discrete Event Subsystems” on page
8-14

For discrete event subsystems that respond to entity departures rather than
signal-based events, see “Creating Entity-Departure Subsystems” on page
8-26.

Setting Up Signal-Based Discrete Event Subsystems
To create discrete event subsystems that respond to signal-based events,
follow the procedure below using blocks in the SimEvents Ports and
Subsystems library.

Note You cannot create a signal-based discrete event subsystem by selecting
blocks and using Edit > Create Subsystem or by converting a time-based
subsystem into a discrete event subsystem. If your model already contains
the blocks you want to put into a discrete event subsystem, then you can
copy them into the subsystem window of a Discrete Event Subsystem block
while following the procedure below.

1 Drag the Discrete Event Subsystem block from the SimEvents Ports and
Subsystems library into your model. Initially, it shows one signal input port
Din and one output signal port Dout. Note that these are signal ports, not
entity ports, because the subsystem is designed to process signals rather
than entities. Furthermore, the signal input ports carry only real scalar
signals of data type double.

8-11

8 Controlling Timing Using Subsystems

2 In the model window, double-click the Discrete Event Subsystem block
to open the subsystem it represents. Initially, the subsystem contains
an inport connected to an outport. Note that these are Discrete Event
Inport and Discrete Event Outport blocks, which are not the same as the
Inport and Outport blocks in the Simulink Ports & Subsystems library.
The subsystem also contains a Subsystem Configuration block, which you
should not delete.

3 A discrete event subsystem must have at least one input that determines
when the subsystem executes. To change the number of inputs or outputs
to the subsystem, change the number of inport and outport blocks in the
subsystem window:

• If your subsystem requires an additional input or output, then copy
and paste an inport block or outport block in the subsystem window.
(Copying and pasting is different from duplicating the inport, which is
not supported.) The figure below shows a pasted inport block.

8-12

Working with Discrete Event Subsystem Blocks

As a result, the subsystem block at the upper level of your model shows
the additional port as appropriate. The figure below shows an additional
input port on the subsystem block.

• If your subsystem needs no outputs, then select and delete the outport
block in the subsystem window. The figure below shows the absence of
outport blocks.

As a result, the subsystem block at the upper level of your model omits
the output port. The figure below shows the absence of output ports on
the subsystem block.

4 Drag other blocks into the subsystem window as appropriate to build the
subsystem. This step is similar to the process of building the top level of
your model, except that only certain types of blocks are suitable for use
inside the subsystem. See “Blocks Inside Discrete Event Subsystems” on
page 8-10 for details.

5 Configure each of the Discrete Event Inport blocks to indicate when the
subsystem should be executed. Each inport block independently determines
criteria for executing the subsystem:

8-13

8 Controlling Timing Using Subsystems

• To execute the subsystem when the signal corresponding to that inport
exhibits a qualifying signal-based event, select Execute subsystem
upon signal-based events and use additional parameters in the dialog
box to describe the signal-based event.

• To have the subsystem use the most recent value of the signal
corresponding to that inport without responding to signal-based events
in that signal, clear the Execute subsystem upon signal-based
events option.

Signal-Based Events That Control Discrete Event
Subsystems
Blocks in a Discrete Event Subsystem are called in response to signal-based
events. Using the dialog box of the Discrete Event Inport blocks inside the
subsystem, you configure the subsystem so that it is executed in response to

• An updated value in an input signal, even if the updated value is the same
as the previous value

• A change in the value of an input signal

• A rising edge or falling edge in an input signal known as a trigger signal

8-14

Working with Discrete Event Subsystem Blocks

Note To call a subsystem upon an entity departure or upon a function
call, see “Creating Entity-Departure Subsystems” on page 8-26 or “Using
Function-Call Subsystems” on page 8-32, respectively.

In a discrete event subsystem containing multiple Discrete Event Inport
blocks, the subsystem is executed when at least one of the inports detects a
qualifying event. Two qualifying events at the same time cause two calls
to the subsystem. If you want one of the inports to provide an input signal
without affecting the times at which the subsystem is executed, then clear
the Execute subsystem upon signal-based event check box on that inport
block; however, always select Execute subsystem upon signal-based
event for at least one inport of the subsystem or else the subsystem will
never be executed.

Comparison of Event Types for Discrete Event Subsystems
Here are some points to keep in mind when deciding which type of
signal-based event should call your discrete event subsystem:

• Value changes are similar to sample time hits, except that a sample time
hit might cause a signal to be updated with the same value. If you expect
that calling the subsystem for repeated values of an input signal would
produce incorrect numerical results or would be wasteful, then execute
the subsystem upon changes in the signal value rather than upon every
sample time hit.

• The Discrete Event Subsystem block is similar to the ordinary Triggered
Subsystem block in the Simulink Ports & Subsystems library. However,
the Discrete Event Subsystem block can detect zero-duration values in
the input signal, which are signal values that do not persist for a positive
duration. (See “Multiple Simultaneous Updates” on page 3-13 for details on
zero-duration values.) Unlike the Triggered Subsystem block, the Discrete
Event Subsystem block can detect and respond to a trigger edge formed by
a zero-duration value, as well as multiple edges in a single instant of time.

For more information about signal-based events, see “Types of Supported
Events” on page 2-2.

8-15

8 Controlling Timing Using Subsystems

Examples Using Discrete Event Subsystem Blocks
The topics listed below illustrate the use of the Discrete Event Subsystem
block.

Topic Feature of Example

“Example: Adding the Lengths of
Two Queues” on page 8-16

Manipulating two event-based
signals having different timing

“Example: Normalizing a Statistic to
Use for Routing” on page 8-17

Performing event-oriented
computation for use in a subsequent
block

“Example: Using Event-Based
Timing for a Statistical
Computation” on page 8-19

Integrating a signal having
asynchronous discontinuities

“Example: Ending the Simulation
Upon an Event” on page 8-20

Responding immediately to
asynchronous discontinuities

“Example: Sending Unrepeated
Data to the MATLAB Workspace” on
page 8-21

Logging data only when a signal
changes

“Example: Focusing on Events, Not
Values” on page 8-22

Counting changes in a signal’s value

“Example: Detecting Changes from
Empty to Nonempty” on page 8-23

Manipulating one signal when
another signal crosses zero

“Example: Logging Data About the
First Entity on a Path” on page 8-24

Focusing on the first entity that uses
a path

Example: Adding the Lengths of Two Queues
In a model containing two queues, the sum of the lengths of the queues
changes when either queue has an arrival or departure. A queue block’s #n
output signal is updated after each arrival if the queue is nonempty, and after
each departure. By contrast, the Sum block is a time-based block. The model
below performs the addition inside a discrete event subsystem whose Discrete
Event Inport blocks both have Type of signal-based event set to Sample
time hit. This way, the addition occurs whenever either #n signal is updated.

8-16

Examples Using Discrete Event Subsystem Blocks

If both queues update their #n values at the same time on the simulation
clock, then the discrete event subsystem is called twice at that time.

Top-Level Model

Subsystem Contents

Example: Normalizing a Statistic to Use for Routing
Suppose you want to make a routing decision based on an output signal from
a SimEvents block, but you must manipulate or normalize the statistic so
that the routing block receives a value in the correct range. In the model
shown below, the util output signal from the Single Server block assumes real
values between 0 and 1, while the p input signal to the Output Switch block
expects values of 1 or 2. The discrete event subsystem adds 1 to the rounded
utilization value.

8-17

8 Controlling Timing Using Subsystems

The Discrete Event Inport block inside the subsystem has Type of
signal-based event set to Sample time hit so that the computation occurs
whenever the server block updates the value of the utilization signal. The
subsystem’s configuration and the presence of the Delay of Length Zero block
ensure that the routing decision always uses the most up-to-date value of the
util signal.

At a time instant at which an entity departs from the Single Server block, the
sequence of operations is as follows:

1 The entity advances from the Single Server block to the block labeled Delay
of Length Zero, which is merely a single server whose service time is zero.

2 The Single Server block updates its util output signal.

The fact that this occurs after the entity has already departed from the
Single Server block and arrived at a storage block is the reason for the
Delay of Length Zero block. See “Interleaved Operations of Storage and
Nonstorage Blocks” on page 12-4 for details.

3 The subsystem reacts to the updated value of util by computing an updated
value at the p input port of the Output Switch block.

4 The entity advances from the Delay of Length Zero block to the Output
Switch, which uses an up-to-date p signal to determine the routing
behavior.

Top-Level Model

8-18

Examples Using Discrete Event Subsystem Blocks

Subsystem Contents

Example: Using Event-Based Timing for a Statistical
Computation
This example performs the computation described in “Timing for a Statistical
Computation” on page 8-3, to find the total length of time during the
simulation that a queue’s length equals or exceeds a threshold value.

In the model shown below, the threshold is three entities. The Compare To
Constant block produces an indicator function for that threshold. The Discrete
Time Integrator block, configured to have an inherited sample time rather
than an explicit discrete sample time, computes the area under the curve of
the indicator function, that is, the total amount of time that the input to the
subsystem exceeds the threshold. The Discrete Event Inport block inside
the subsystem has Type of signal-based event set to Sample time hit so
that the computation occurs whenever the queue block updates the value of
the queue length signal. The subsystem’s configuration ensures that the
comparison block does not miss any asynchronous discontinuities in the queue
length signal and that the integrator processes the correct indicator function.

Top-Level Model

8-19

8 Controlling Timing Using Subsystems

Subsystem Contents

Note In this example, it is important to use a discrete-time integrator with
an inherited sample time instead of a continuous-time integrator. See “Blocks
Inside Discrete Event Subsystems” on page 8-10 for more information.

Example: Ending the Simulation Upon an Event
This example ends the simulation as described in “Timing for the End of
the Simulation” on page 8-2, precisely when the number of entities in a
queue first equals or exceeds a threshold. In the model shown below, the
Compare To Constant and Stop Simulation blocks are in a discrete event
subsystem. The Discrete Event Inport block inside the subsystem has Type
of signal-based event set to Sample time hit so that Simulink calls the
subsystem at exactly those times when the FIFO Queue block updates the
value of the queue length signal.

Top-Level Model

8-20

Examples Using Discrete Event Subsystem Blocks

Subsystem Contents

Example: Sending Unrepeated Data to the MATLAB
Workspace
Suppose you want to log statistics to the MATLAB workspace, but you want to
save simulation time and memory by capturing only values that are relevant
to you. You might want to suppress repeated values, for example, or capture
only values that represent an increase from the previous value.

In the model shown below, the discrete event subsystem contains a To
Workspace block whose Save format parameter is set to Structure With
Time. The Discrete Event Inport block inside the subsystem has Type of
signal-based event set to Change in signal and Type of change in
signal value set to Either, so that the MATLAB workspace variable tells you
when the Output Switch block selects an entity output port that differs from
the previously selected one. If, for example, the switch is configured to select
the first port that is not blocked, then a change in the port selection indicates
a change in the state of the simulation (that is, a previously blocked port has
become unblocked, or a port becomes blocked that previously was not).

Top-Level Model

8-21

8 Controlling Timing Using Subsystems

Subsystem Contents

Example: Focusing on Events, Not Values
The example below counts the number of times a signal changes its value,
ignoring times at which the signal might be updated with the same value.
The discrete event subsystem contains a Counter Free-Running block with an
inherited sample time. Because the Counter Free-Running counts starting
from 0, the subsystem also adds 1 to the counter output.

The Discrete Event Inport block inside the subsystem has Type of
signal-based event set to Change in signal and Type of change in
signal value set to Either, so that the subsystem is executed each time the
input signal changes its value. In contrast to other subsystem examples, this
subsystem does not use the signal’s specific values for computations; the input
signal is connected to a Terminator block inside the subsystem. The counter’s
value is what the subsystem sends to the MATLAB workspace.

In this example, avoiding extraneous calls to the subsystem is not merely a
time-saver or memory-saver, but rather a strategy for producing the correct
results.

8-22

Examples Using Discrete Event Subsystem Blocks

Top-Level Model

Subsystem Contents

Example: Detecting Changes from Empty to
Nonempty
The example below executes a subsystem only when an N-server changes
from empty to nonempty, or vice versa, but not when the number of entities
in the server remains constant or changes between two nonzero values. In
the model, the N-Server block produces a #n signal that indicates the number
of entities in the server. The server is empty if and only if the #n signal is
zero. Connected to the #n signal is a Discrete Event Inport block inside
the subsystem that has Type of signal-based event set to Trigger and
Trigger type set to Either, so that the subsystem is executed each time the
#n signal changes from zero to one or from one to zero. Connected to the
w signal is another Discrete Event Inport block inside the subsystem; this

8-23

8 Controlling Timing Using Subsystems

block has Execute subsystem upon signal-based events cleared so that
this signal does not cause additional calls to the subsystem; the subsystem
merely uses the most recent value of the w signal whenever the #n signal
exhibits a trigger edge.

Note Because the N-Server block updates the w signal before updating the
#n signal, both signals are up to date when the trigger edge occurs.

If the server changes instantaneously from empty to nonempty and back to
empty, then the subsystem is called exactly twice in the same time instant,
once for the rising edge and once for the subsequent falling edge. The
Triggered Subsystem block might not detect the edges that the zero-duration
value of 1 creates, and thus might not call the subsystem at that time instant.
This is why the Discrete Event Subsystem block is more appropriate for this
application.

Example: Logging Data About the First Entity on a
Path
Suppose your model includes a particular entity path that entities rarely use,
and you want to record certain attributes of the first entity that takes that
path during the simulation. You can send the attribute values to the MATLAB
workspace by using a To Workspace block inside a discrete event subsystem.

In the example below, the #d output signal from the Get Attribute block
indicates how many entities have departed from the block. The other outputs
from that block are the attribute values that you want to send to the MATLAB
workspace. Connected to the #d signal is a Discrete Event Inport block inside
the subsystem that has Type of signal-based event set to Trigger, so
that the subsystem is executed each time the #d signal changes from zero
to one. Connected to the A1 and A2 signals are additional Discrete Event
Inport blocks inside the subsystem. These blocks have Execute subsystem

8-24

Examples Using Discrete Event Subsystem Blocks

upon signal-based events cleared so that the attribute signals do not cause
additional calls to the subsystem; the subsystem merely uses the most recent
value of the A1 and A2 signals whenever the #d signal exhibits a trigger edge.

The To Workspace block inside the subsystem does not actually create the
variables in the MATLAB workspace until the simulation ends, but the
variable contents are correct because the timing of the subsystem corresponds
to the time of the #d signal’s first positive value.

Note Because the Get Attribute block updates the A1 and A2 signals before
updating the #d signal, all signals are up to date when the trigger edge occurs.

8-25

8 Controlling Timing Using Subsystems

Creating Entity-Departure Subsystems
You can create a subsystem that Simulink calls only when an entity
departs from a particular block in your model. The figure below shows a
prototype, although most ports are not yet connected. The prototype uses the
Entity-Based Function-Call Event Generator block to generate a function call
when an entity departs. The function call executes the subsystem.

Prototype of Entity-Departure Subsystems

Accessing Blocks for Entity-Departure Subsystems
To create discrete event subsystems that respond to entity departures, use
some or all of the blocks listed below.

8-26

Creating Entity-Departure Subsystems

Block Library Location Purpose

Entity-Based
Function-Call Event
Generator

Event Generators
library in SimEvents

Entity Departure Event
to Function-Call Event

Event Translation
library in SimEvents

Issues a function call
corresponding to each
entity departure

Mux Signal Routing library
in Simulink

Combines multiple
function-call signals
into a single
function-call signal,
if needed

Function-Call
Subsystem

Ports & Subsystems
library in Simulink

Contains blocks to
execute upon each
function call. You
must configure the
subsystem to propagate
its execution context, as
described in “Creating
Entity-Departure
Subsystems” on page
8-26.

Inport

Outport

Ports & Subsystems
library in Simulink

Links a subsystem to
its parent system

Setting Up Entity-Departure Subsystems
To create subsystems that respond to entity departures, follow the procedure
below.

1 Insert and configure the Function-Call Subsystem block as described in
“Setting Up Function-Call Subsystems in SimEvents Models” on page 8-32.

2 Insert one or more of these blocks into your model. The first is easier to
use but less flexible.

• Entity-Based Function-Call Event Generator

• Entity Departure Event to Function-Call Event

8-27

8 Controlling Timing Using Subsystems

Note You can configure these blocks to issue a function call either before or
after the entity departs. In most situations, the After entity departure
option is more appropriate. The Before entity departure option can
be problematic if a subsystem is executed too soon, but is an appropriate
choice in some situations.

3 Connect the newly inserted blocks to indicate which entity departures
should call the subsystem. If entity departures from multiple blocks should
call the subsystem, then combine multiple function-call signals using a
Mux block.

8-28

Examples Using Entity-Departure Subsystems

Examples Using Entity-Departure Subsystems
The topics listed below illustrate the use of entity-departure subsystems.

Topic Feature of Example

“Example: Using Entity-Based
Timing for Choosing a Port” on page
8-29

Calling a signal source when an
entity departs from a block

“Example: Performing a
Computation on Selected Entity
Paths” on page 8-31

Detecting departures from multiple
blocks

Example: Using Entity-Based Timing for Choosing
a Port
This example performs the entity-based routing described in “Timing for
Choosing a Port Using a Sequence” on page 8-4. The example routes entities
by establishing a sequence of paths and then choosing a number from that
sequence for each entity that arrives at the routing block. This is the situation
shown in the figure Departure Port Changes with Each Entity on page 8-6.

In the model shown below, the Function-Call Subsystem block contains a
Repeating Sequence Stair block whose Sample time parameter is set to -1
(inherited). Any entity that arrives at the Output Switch block previously
departed from the Entity Departure Event to Function-Call Event block.
The function-call output from that block caused the subsystem to produce
a number that indicates which entity output port the entity uses when it
departs from the Output Switch block.

If you used the Repeating Sequence Stair block with an explicit sample time
and not inside a subsystem, then the routing behavior would depend on the
clock, as shown in the figure Departure Port Changes with Time on page
8-6, rather than on entity departures.

8-29

8 Controlling Timing Using Subsystems

Top-Level Model

Subsystem Contents

The Entity Departure Event to Function-Call Event block, which issues
function calls after entity departures, appears before the Single Server block
instead of between the Single Server block and the Output Switch block. This
placement ensures that when the function call executes the subsystem, the
entity has not yet arrived at the switch but rather is stored in the server.
Possible alternative approaches are to

• Place the Entity Departure Event to Function-Call Event block, followed
by an extra server, between the Single Server block and the switch.
This approach is similar to the use of the Delay of Length Zero block in
“Example: Normalizing a Statistic to Use for Routing” on page 8-17.

• Configure the Entity Departure Event to Function-Call Event block to
issue function calls before entity departures and place the block between
the server and the switch. Issuing function calls before departures does not
lead to causality problems in this particular example.

8-30

Examples Using Entity-Departure Subsystems

Example: Performing a Computation on Selected
Entity Paths
The model below performs a computation whenever an entity arrives at the
IN2 or IN3 entity input port of a Path Combiner block, but not when an
entity arrives at the IN1 port of the Path Combiner block. The computation
occurs inside the Function-Call Subsystem block. When an entity departs
from specific blocks that precede the Path Combiner block, the corresponding
Entity-Based Function-Call Event Generator block issues a function call. A
Mux block combines the two function-call signals, creating a function-call
signal that calls the subsystem. If both event generators issue a function
call at the same value of the simulation clock, then the subsystem is called
twice at that time.

8-31

8 Controlling Timing Using Subsystems

Using Function-Call Subsystems
The most general kind of discrete event subsystem is an appropriately
configured Function-Call Subsystem block, where the appropriate
configuration requires selecting the Propagate execution context across
subsystem boundary option as a subsystem property. You can execute such
a subsystem at the exact time of an input function call, whether the function
call comes from a Stateflow block, a block in the Event Generators library, a
block in the Event Translation library, or the Function-Call Generator block.

Use Cases for Function-Call Subsystems
The Discrete Event Subsystem block and the entity-departure subsystems
discussed in “Working with Discrete Event Subsystem Blocks” on page 8-11
and “Creating Entity-Departure Subsystems” on page 8-26, respectively, are
special cases of the Function-Call Subsystem block configured as a discrete
event subsystem. You might require the additional flexibility provided by the
Function-Call Subsystem approach if you want to execute the subsystem upon

• The logical OR of multiple event occurrences, where the events can come
from any combination of a Stateflow block, another source of function calls,
or a signal-based event. To do this, use the Mux block to combine multiple
function-call signals into one function-call signal.

For an example, see “Example: Executing a Subsystem Based on Multiple
Types of Events” on page 2-40.

• The logical AND of an event occurrence and some underlying condition. To
do this, use blocks in the Event Translation library and select Suppress
function call f1 if enable signal e1 is not positive (or the similar
option for the f2 and e2 ports).

For an example, see “Example: Detecting Changes in the Last-Updated
Signal” on page 3-10.

Setting Up Function-Call Subsystems in SimEvents
Models
To use a Function-Call Subsystem block in a model that uses event-based
blocks or event-based signals, follow the procedure below.

8-32

Using Function-Call Subsystems

Note The selection of the Propagate execution context across
subsystem boundary option is particularly important for ensuring that the
subsystem executes at the correct times.

1 Drag the Function-Call Subsystem block from the Simulink Ports &
Subsystems library into your model. Initially, it shows one signal input port
In1, one output signal port Out1, and a control port function(). Note that
these are signal ports, not entity ports, because the subsystem is designed
to process signals rather than entities.

2 Select the subsystem block and choose Edit > SubSystem Parameters
from the model window’s menu bar.

3 In the dialog box that opens, select Propagate execution context across
subsystem boundary and click OK.

8-33

8 Controlling Timing Using Subsystems

4 In the model window, double-click the Function-Call Subsystem block to
open the subsystem it represents. Initially, the subsystem contains an
Inport block connected to an Outport block. Note that these are from the
Simulink Ports & Subsystems library, and are not the same as the Discrete
Event Inport and Discrete Event Outport blocks in the SimEvents Ports and
Subsystems library. The subsystem also contains a block labeled “function.”

5 To change the number of inputs or outputs to the subsystem, change the
number of Inport and Outport blocks in the subsystem window. You can
copy, paste, and delete these blocks.

6 Drag other blocks into the subsystem window as appropriate to build the
subsystem. This step is similar to the process of building the top level
of hierarchy in your model, except that only certain types of blocks are

8-34

Using Function-Call Subsystems

suitable for use inside the subsystem. See “Blocks Inside Discrete Event
Subsystems” on page 8-10 for details.

8-35

8 Controlling Timing Using Subsystems

8-36

9

Plotting Data

Choosing and Configuring Plotting
Blocks (p. 9-2)

Available types of plots and how to
access them

Plotting Window Features (p. 9-7) Customizing plots

Using Plots for Troubleshooting
(p. 9-8)

Visualizing a simulation to
understand and debug it

Comparison with Time-Based
Plotting Tools (p. 9-15)

Notes about plots designed for
time-based simulations

9 Plotting Data

Choosing and Configuring Plotting Blocks
SimEvents provides scope blocks that help you visualize data from your
simulation. When you insert a scope block into your model, it creates a plot as
the simulation runs. This section describes capabilities of the scope blocks in
these topics:

• “Sources of Data for Plotting” on page 9-2

• “Inserting and Connecting Scope Blocks” on page 9-3

• “Connections Among Points in Plots” on page 9-4

• “Varying Axis Limits Automatically” on page 9-5

• “Examples Using Scope Blocks” on page 9-6

Sources of Data for Plotting
The table below indicates the kinds of data you can plot using various
combinations of blocks and parameter values.

Data Block Parameter

Scalar signal vs. time Signal Scope X value from = Event time

Scalar signal values
without regard to time

Signal Scope X value from = Index

Two scalar signals (X-Y
plot)

X-Y Signal
Scope

Attribute vs. time Attribute Scope X value from = Event time

Attribute values without
regard to time

Attribute Scope X value from = Index

Two attributes of same
entity (X-Y plot)

X-Y Attribute
Scope

9-2

Choosing and Configuring Plotting Blocks

Data Block Parameter

Attribute vs. scalar signal

Scalar signal vs. attribute

Get Attribute
block to assign
the attribute
value to a
signal; followed
by X-Y Signal
Scope

Number of entity arrivals
per time instant

Instantaneous
Entity
Counting Scope

Number of events per
time instant

Instantaneous
Event Counting
Scope

The Signal Scope and X-Y Signal Scope blocks are particularly appropriate for
data arising from discrete-event simulations because the plots can include
zero-duration values. That is, the plots can include multiple values of the
signal at a given time. By contrast, the Scope block in the Simulink Sources
library plots at most one value of the signal at each time.

Inserting and Connecting Scope Blocks
The scope blocks reside in the SimEvents Sinks library. The table below
indicates the input ports on each scope block.

Block Input Port(s) Port Description

Signal Scope One signal input
port

Signal representing the data
to plot

X-Y Signal Scope Two signal input
ports

Signals representing the
data to plot

Attribute Scope One entity input
port

Entities containing the
attribute value to plot

X-Y Attribute Scope One entity input
port

Entities containing the
attribute values to plot

9-3

9 Plotting Data

Block Input Port(s) Port Description

Instantaneous Entity
Counting Scope

One entity input
port

Entities whose arrivals the
block counts

Instantaneous Event
Counting Scope

One signal input
port

Signal whose signal-based
events or function calls the
block counts

The figure below shows some typical arrangements of scope blocks in a model.
Notice that the blocks that have entity input ports can have optional entity
output ports, and that signal lines can branch whereas entity connection
lines cannot.

Connections Among Points in Plots
You can configure certain scope blocks to determine if and how it connects the
points that it plots. The table below indicates the options.

Connection
Characteristics

Setting Sample Plot

Stairstep across, then up
or down. Also known as a
zero-order hold.

Plot type = Stair in
the block’s dialog box

9-4

Choosing and Configuring Plotting Blocks

Connection
Characteristics

Setting Sample Plot

Vertical line from horizontal
axis to point. No connection
with previous or next
plotted point. Also known
as a stem plot.

Plot type = Stem in
the block’s dialog box

Single line segment from
point to point. Also known
as a first-order hold.

Plot type =
Continuous in the
block’s dialog box

No connection with other
points or with axis. Also
known as a scatter plot.

Style > Line > None
in the plot window

Note If a signal does not have an initial condition at T=0, then the plotting
window does not show a point at T=0 and does not connect the first plotted
point to the T=0 edge of the plot.

Varying Axis Limits Automatically
Using parameters on the Axes tab of the dialog box scope blocks, you set the
initial limits for the horizontal and vertical axes of the plot. Also, the If X
value is beyond limit and If Y value is beyond limit parameters let you
choose how the block responds if a point does not fit within the current axis
limits. Choices are in the table below.

9-5

9 Plotting Data

Option Description

Stretch axis limits Maintain one limit while doubling the size of the
displayed interval

Keep axis limits
unchanged

Maintain both limits, which means that points
outside the limits do not appear

Shift axis limits Maintain the size of the displayed interval while
changing both limits

Examples Using Scope Blocks
The following examples use scope blocks to create different kinds of plots:

Example Description

“Plotting the Pending-Entity Signal”
and “Observations from Plots” in the
Getting Started documentation

Stairstep and continuous plots of
statistical signals

“Example: Round-Robin Approach
to Choosing Inputs” in the Getting
Started documentation

Stem plot of data from an attribute

“Example: Using Servers in Shifts”
on page 6-4

Unconnected plot of a signal using
dots

“Example: Choosing the Shortest
Queue” on page 6-8

Unconnected plot of a signal using
x’s as plotting markers

“Example: Setting Attributes” on
page 1-12

Stairstep plots of data from
attributes using Attribute Scope
blocks as sinks

“Example: Synchronizing Service
Start Times with the Clock” on page
7-6

Stem plots that count entities using
Instantaneous Entity Counting
Scope blocks with entity output ports

X-Y Signal Scope reference page Continuous plot of two signals

X-Y Attribute Scope reference page Unconnected plot of two attributes
using x’s as plotting markers

9-6

Plotting Window Features

Plotting Window Features
After a scope block opens its plotting window, you can modify several aspects
of the plot by using the plotting window’s menu and toolbar:

• Autoscale resizes the axes to fit the range of the data and replaces the
values of the upper and lower limit parameters on the Axes tab of the
block’s dialog box.

• The Zoom In and Zoom Out toolbar buttons change the axes as described in
the MATLAB documentation about zooming in 2-D views.

• The Style menu lets you change the line type, marker type, and color of the
plot. Your changes are saved when you save the model.

• Save position updates the Position parameter on the Figure tab of the
block’s dialog box to reflect the window’s current position and size.

Note When a menu option duplicates the behavior of a parameter in the
block’s dialog box, selecting the menu option replaces the corresponding
parameter value in the dialog. You can still edit the parameter values in
the dialog manually. An example of this is the Show grid menu option and
dialog box parameter.

The Save Figure toolbar button lets you save the current state of the plot to a
FIG-file. You can reload the file in a different MATLAB session. Reloading
the file creates a plot that is not associated with the original scope block and
that does not offer the same menu and toolbar options as in the original
plotting window.

9-7

9 Plotting Data

Using Plots for Troubleshooting
Typical ways to use plotting blocks in the SimEvents Sinks library to
troubleshoot problems are described in the table below.

Technique Example

Plot a block’s #d output signal to
check when an entity departs from
the block.

“Example: Plotting Entity
Departures to Verify Timing”
on page 9-8

Plot statistical output signals such
as pe or last, if applicable, to check
whether operations such as service
completion or routing are occurring
as you expect.

“Example: Using Servers in Shifts”
on page 6-4 and “Timing for Choosing
a Port Using a Sequence” on page 8-4

Plot input signals such as
port selection, service time, or
intergeneration time, and compare
the values with observations of how
the corresponding blocks use those
signals.

“Example: Race Conditions at a
Switch” on page 2-23

Plot the output of a Read Timer block
to check how long entities spend in a
region of the model.

“Example: M/M/5 Queuing System”
on page 4-13

Use the Instantaneous Entity
Counting Scope or Instantaneous
Event Counting Scope block to
check whether events you expect
to be simultaneous are, in fact,
simultaneous.

“Example: Plotting Event Counts to
Find Roundoff Error” on page 9-12

Example: Plotting Entity Departures to Verify Timing
The example below compares two methods of opening a gate at a random
time and leaving the gate open for the rest of the simulation. The Signal
Scope block lets you see when the gate opens, to check whether the timing is
what you expected. One method exhibits latency in the gate’s opening. For a

9-8

Using Plots for Troubleshooting

nonvisual way to determine when entities depart from the gate, see “Viewing
Entity Locations” on page 11-8.

Model Exhibiting Correct Timing
The model below views the random opening of the gate as a discrete event,
and models it via an entity departure from a server at a random time. The
Time-Based Entity Generator block generates exactly one entity, at T=0. The
Single Server block delays the entity for the amount of time indicated by the
Uniform Random Number block, 3.531 seconds in this case. At T=3.531, the
entity arrives at the Entity Sink block. This time is exactly when the sink
block’s #a signal changes from 0 to 1, which in turn causes the gate to open.

By using the zoom feature of the scope, you can compare the time at which
entities depart from the Enabled Gate block with the random time shown
on the Display block in the model.

9-9

9 Plotting Data

Model Exhibiting Latency
The model below uses the Variable Time Delay block to create a step signal
that is intended to change from 0 to 1 at a random time. However, because
the Variable Time Delay block is time-based, it updates its output signal at
times dictated by the time-based simulation clock. The step signal does not
actually change from 0 to 1 until the next sample time hit after the time
indicated by the random number. This is the intentional documented behavior
of this time-based block.

9-10

Using Plots for Troubleshooting

By using the zoom feature of the scope, you can see that entities depart from
the Enabled Gate block later than the random time shown on the Display
block in the model.

9-11

9 Plotting Data

Example: Plotting Event Counts to Find Roundoff
Error
The example below suggests how to use the Instantaneous Event Counting
Scope block to determine whether events you want to be simultaneous are
truly simultaneous.

Suppose you want two entity generators with periods of 1 and 1/3 to create
simultaneous entity departures every second, so that event priorities
determine which entity arrives at the queue first. By counting events at each
value of time and checking when the count is 2, you can see whether two
entity generation events are truly simultaneous.

Model Exhibiting Simultaneous Events
The model below uses two Event-Based Entity Generator blocks receiving
the same input signal. You can see from the plot that simultaneous events
occur every second, as desired.

9-12

Using Plots for Troubleshooting

Although this example uses the Instantaneous Event Counting Scope to plot a
#d signal, you can alternatively use the Instantaneous Entity Counting Scope
to count entities departing from the Path Combiner block.

Model Exhibiting Nonsimultaneous Events
Using the Period parameter of the Time-Based Entity Generator block shows
how roundoff error in the computer’s representation of the floating-point
number 1/3 can cause events to be close in time, but not simultaneous. In
general, comparing floating-point numbers within a tolerance is a better
practice than testing for equality. Computers’ use of floating-point arithmetic
involves a finite set of numbers with finite precision.

9-13

9 Plotting Data

9-14

Comparison with Time-Based Plotting Tools

Comparison with Time-Based Plotting Tools
Simulink offers plotting tools designed for signals in time-based simulations.
To learn more, see these parts of the Simulink documentation:

• “The Signal & Scope Manager”

• Scope block reference page

• XY Graph block reference page

• simplot function reference page

If you use these time-based tools instead of event-based tools, note that they
typically join each pair of successive points with a single line segment. To
create a stairstep plot, use the blocks in the SimEvents Sinks library. Also,
time-based plotting tools plot at most one value at each time, whereas blocks
in the SimEvents Sinks library can include zero-duration values.

Compare the two figures below, which depict the same data, when you consider
which plotting tools are more appropriate in your event-based simulations.

Time-Based Plot of Number of Entities in a Server

9-15

9 Plotting Data

Discrete-Event Plot of Number of Entities in a Server

9-16

10

Using Statistics

Role of Statistics in Discrete-Event
Simulation (p. 10-2)

How well-designed simulation
statistics can help you learn or make
decisions about your system

Accessing Statistics from SimEvents
Blocks (p. 10-4)

Computing statistics while the
simulation runs

Using Timers (p. 10-7) Recording how long entities take to
reach a block

Running a Series of Simulations
(p. 10-13)

Running multiple simulations and
regulating the simulation length

10 Using Statistics

Role of Statistics in Discrete-Event Simulation
Most SimEvents blocks are capable of producing one or more statistical output
signals. You can use these signals to gather data from the simulation or to
influence the dynamics of the simulation. This section gives an overview of
both purposes, in these topics:

• “Statistics for Data Analysis” on page 10-2

• “Statistics for Run-Time Control” on page 10-3

The rest of this chapter illustrates some modeling and analysis techniques
that you can use with SimEvents. However, a detailed treatment of statistical
analysis is well beyond the scope of this User’s Guide; see the works listed
in “Selected Bibliography” for more information.

Statistics for Data Analysis
Often, the purpose of creating a discrete-event simulation is to improve
understanding of the underlying system being modeled or to use simulation
results to help make decisions about the underlying system. Numerical
results gathered during simulation can be important tools.

For example, if you simulate the operation and maintenance of equipment
on an assembly line, then you might use the computed production and defect
rates to help decide whether to change your maintenance schedule. As
another example, if you simulate a communication bus under varying bus
loads, then you might use computed average delays in high- or low-priority
messages to help determine whether a proposed architecture is viable.

Just as you decide how to design a simulation model that adequately describes
the underlying system, you decide how to design the statistical measures that
you will use to learn about the system. Some questions to consider are

• Which statistics are meaningful for your investigation or decision?
For example, if you are trying to maximize efficiency, then what is an
appropriate measure of efficiency in your system? As another example,
does a mean give the best performance measure for your system, or is it
also worthwhile to consider the proportion of samples in a given interval?

10-2

Role of Statistics in Discrete-Event Simulation

• How can you compute the desired statistics? For example, do you need to
ignore any transient effects, does the choice of initial conditions matter, and
what stopping criteria are appropriate for the simulation?

• To ensure sufficient confidence in the result, how many replications of the
simulation do you need? One simulation run, no matter how long, is still a
single sample and probably inadequate for valid statistical analysis.

For details concerning statistical analysis and variance reduction
techniques, see the works [7], [4], [1], and [2] listed in “Selected
Bibliography” in the “Getting Started with SimEvents” book.

Statistics for Run-Time Control
Some systems rely on statistics to influence the dynamics. For example, a
queuing system with discouraged arrivals has a feedback loop that adjusts
the arrival rate throughout the simulation based on statistics reported by the
queue and server, as illustrated in the discouragearrival demo model.

When you create simulations that use statistical signals to control the
dynamics, you must have access to the current values of the statistics at key
times throughout the simulation, not just at the end of the simulation. Some
questions to consider while designing your model are

• Which statistics are meaningful, and how should they influence the
dynamics of the system?

• How can you compute the desired statistics at the right times during
the simulation? It is important to understand when SimEvents blocks
update each of their statistical outputs and when other blocks can access
the updated values. This topic is discussed in Chapter 3, “Working with
Signals”.

• Do you need to account for initial conditions or extreme values in any
special way? For example, if your control logic involves the number of
entities in a queue, then be sure that the logic is sound even when the
queue is empty or full.

• Will small perturbations result in large changes in the system’s behavior?
When using statistics to control the model, you might want to monitor those
statistics or other statistics to check whether the system is undesirably
sensitive to perturbations.

10-3

10 Using Statistics

Accessing Statistics from SimEvents Blocks
Most SimEvents blocks can produce one or more statistical outputs. To see
which statistics are available, open the block’s dialog box. In most cases, the
list of available statistics appears on the Statistics tab of the dialog box.
For example, the figure below shows the Statistics tab of the FIFO Queue
block’s dialog box.

In cases where the dialog box has no Statistics tab, such as the Entity Sink
block, the dialog box has so few parameters that the statistical options are
straightforward to locate.

To use one or more statistics, see the options described in these sections:

• “Accessing Statistics Throughout the Simulation” on page 10-4

• “Accessing Statistics When Stopping or Pausing Simulation” on page 10-6

Accessing Statistics Throughout the Simulation
To configure a block so that it outputs an available statistic throughout the
simulation, set the corresponding parameter in the dialog box to On. After you
apply the change, the block has a signal output port corresponding to that

10-4

Accessing Statistics from SimEvents Blocks

statistic. The figure below shows the dialog box and icon for the FIFO Queue
block after the average wait statistic is enabled.

�
�
�

����	�����

���	�����
��

���
�����

�
�

��

You can connect this signal output port to the signal input port of any block.
For example, you can connect the statistical signal output port to

• A Signal Scope or X-Y Signal Scope block, to create a plot using the statistic.

• A Display block, which shows the statistic on the block icon throughout
the simulation.

• A Discrete Event Signal to Workspace block, which writes the entire data
set to the MATLAB workspace when the simulation stops or pauses. To
learn more, see “Sending Data to the MATLAB Workspace” on page 3-23.

• A custom subsystem or computational block, for further data processing.

For more information about when SimEvents blocks update their statistical
signals and when other blocks react to the updated values, see Chapter 3,
“Working with Signals”.

10-5

10 Using Statistics

Accessing Statistics When Stopping or Pausing
Simulation
In some cases, you can configure a block to report a statistic only when
the simulation stops or pauses. To do this, find the dialog box parameter
that corresponds to the given statistic and set it to Upon stop or pause, if
available. After you apply the change, the block has a signal output port
corresponding to that statistic.

Because the statistic is not reported throughout the simulation, not all uses
of the signal are appropriate. One appropriate use is in conjunction with a
Discrete Event Signal to Workspace block with Save format set to Structure
With Time.

10-6

Using Timers

Using Timers
Suppose you want to determine how long each entity takes to advance from
one block to another, or how much time each entity spends in a particular
region of your model. To compute these durations, you can attach a timer to
each entity that reaches a particular spot in the model. Then you can

• Start the timer. The block that attaches the timer also starts it.

• Read the value of the timer whenever the entity reaches a spot in the
model that you designate.

• Restart the timer, if desired, whenever the entity reaches a spot in the
model that you designate.

The following sections describe how to arrange the Start Timer and Read
Timer blocks to accomplish several common timing goals:

• “Basic Example Using Timer Blocks” on page 10-7

• “Basic Procedure for Using Timer Blocks” on page 10-8

• “Timing Multiple Entity Paths with One Timer” on page 10-9

• “Restarting a Timer” on page 10-10

• “Timing Multiple Processes Independently” on page 10-12

Note Timers measure durations, or relative time. By contrast, clocks
measure absolute time. For details about implementing clocks, see
the descriptions of the Clock and Digital Clock blocks in the Simulink
documentation.

Basic Example Using Timer Blocks
A typical block diagram for determining how long each entity spends in a
region of the model is in the figure below. The Start Timer and Read Timer
blocks jointly perform the timing computation.

10-7

10 Using Statistics

The model shown above measures the time each entity takes between arriving
at the queue and departing from the server. The Start Timer block attaches,
or associates, a timer to each entity that arrives at the block. Each entity has
its own timer. Each entity’s timer starts timing when the entity departs from
the Start Timer, or equivalently, when the entity arrives at the FIFO Queue
block. Upon departing from the Single Server block, each entity arrives at a
Read Timer block. The Read Timer block reads data from the arriving entity’s
timer and produces a signal at the et port whose value is the instantaneous
elapsed time for that entity. For example, if the arriving entity spent 12
seconds in the queue-server pair, then the et signal assumes the value 12.

Basic Procedure for Using Timer Blocks
A typical procedure for setting up timer blocks is as follows:

1 Locate the spots in the model where you want to begin timing and to access
the value of the timer.

2 Insert a Start Timer block in the model at the spot where you want to begin
timing.

3 In the Start Timer block’s dialog box, enter a name for the timer in
the Timer tag field. This timer tag distinguishes the timer from other
independent timers that might already be associated with the same entity.

When an entity arrives at the Start Timer block, the block attaches a
named timer to the entity and begins timing.

4 Insert a Read Timer block in the model at the spot where you want to
access the value of the timer.

10-8

Using Timers

5 In the Read Timer block’s dialog box, enter the same Timer tag value that
you used in the corresponding Start Timer block.

When an entity having a timer with the specified timer tag arrives at
the block, the block reads the time from that entity’s timer. Using the
Statistics tab of the Read Timer block’s dialog box, you can configure the
block to report this instantaneous time or the average of such values among
all entities that have arrived at the block.

If you need multiple independent timers per entity (for example, to time an
entity’s progress through two possibly overlapping regions of the model), then
follow the procedure above for each of the independent timers. For more
information, see “Timing Multiple Processes Independently” on page 10-12.

Timing Multiple Entity Paths with One Timer
If your model includes routing blocks, then different entities might use
different entity paths. To have a timer cover multiple entity paths, you can
include multiple Start Timer or multiple Read Timer blocks in a model, using
the same Timer tag parameter value in all timer blocks.

Output Switch Example
In the figure below, each entity advances along one of two different entity
paths via the Output Switch block. The timer continues timing, regardless of
the selected path. Finally, each entity advances to one of the two Read Timer
blocks, which reads the value of the timer.

10-9

10 Using Statistics

Input Switch Example
In the figure below, entities wait in two different queues before advancing to a
single server. The timer blocks measure the time each entity spends in its
respective queue-server pair. Two Start Timer blocks, configured with the
same Timer tag parameter value, ensure that all entities possess a timer
regardless of the path they take before reaching the server.

Restarting a Timer
You can restart an entity’s timer, that is, reset its value to zero, whenever the
entity reaches a spot in the model that you designate. To do this, insert a
Start Timer block in the model where you want to restart the timer. Then set
the block’s If timer has already started parameter to Restart.

The figure below shows an example of restarting a timer.

10-10

Using Timers

All timer blocks share the same Timer tag parameter value. All entities
that arrive at the first Start Timer block acquire a timer, which starts timing
immediately. All entities incur an initial delay, modeled by an Infinite Server
block. When entities reach the Output Switch block, they depart via one of
the two entity output ports and receive different treatment:

• Entities that depart via the OUT1 port advance to the queue with no
further delay, and the timer continues timing.

• Entities that depart via the OUT2 port incur an additional delay, modeled
by another Infinite Server block. After the delay, the timer restarts from
zero and the entity advances to the queue.

When entities finally advance from the server to the Read Timer block, the
elapsed time is one of these quantities:

• The initial delay plus the time in the queue plus the time in the server, for
entities that departed from the Output Switch block’s OUT1 port

10-11

10 Using Statistics

• The time in the queue plus the time in the server, for entities that departed
from the Output Switch block’s OUT2 port

Timing Multiple Processes Independently
You can measure multiple independent durations using the Start Timer and
Read Timer blocks. To do this, create a unique Timer tag parameter for each
independent timer. For clarity in your model, consider adding an annotation
or changing the block names to reflect the Timer tag parameter in each
timer block.

The figure below shows how to measure these quantities independently:

• The time each entity spends in the queue-server pair, using a timer with
tag T1

• The time each entity spends in the server, using a timer with tag T2

The annotations below the blocks in the figure indicate the values of the
Timer tag parameters. Notice that the T1 timer starts at the time when
entities arrive at the queue, while the T2 timer starts at the time when
entities depart from the queue (equivalently, at the time when entities arrive
at the server). The two Read Timer blocks read both timers when entities
depart from the server. The sequence of the Read Timer blocks relative to
each other is not relevant in this example because no time elapses while an
entity is in a Read Timer block.

10-12

Running a Series of Simulations

Running a Series of Simulations
This section describes some techniques that can help you gather statistical
data from a series of simulations of your model. The topics are as follows:

• “Creating Independent Replications” on page 10-13

• “Running Simulations from MATLAB” on page 10-15

• “Regulating the Simulation Length” on page 10-20

Creating Independent Replications
When you run a simulation multiple times to gather statistics, you can create
independent replications by using a different stream of random numbers in
each replication. To vary the stream of random numbers, vary the initial
seed on which the stream of random numbers is based. Initial seed is a
parameter in the following blocks:

• Time-Based Entity Generator

• Event-Based Random Number

• Uniform Random Number

• Random Number

• Blocks in the Routing library

Also, if your simulation is configured to randomize the sequence of certain
simultaneous events, then the Configuration Parameters dialog box has a
parameter called Seed for event randomization, which indicates the initial
seed for that stream of random numbers.

Choosing Values for Initial Seed
Here are some recommendations for choosing appropriate values for Initial
seed parameters:

• Choose a large odd number, such as a five-digit odd number.

• To obtain the same stream of random numbers the next time you run the
same simulation, set Initial seed to an unchanging value.

10-13

10 Using Statistics

• To obtain a different stream of random numbers the next time you run
the same simulation, either change the value of Initial seed or set it to a
varying expression such as ceil(cputime*99999)*2+1. See the cputime
function for more details.

• If Initial seed parameters appear in multiple places in your model, then
choose different values or different expressions for each Initial seed
parameter.

Setting Values for Initial Seed
When running a simulation interactively, you can simply enter your chosen
value for the initial seed in the dialog box for a given block.

When you run a simulation multiple times to gather statistics, you might
want to use a MATLAB variable to make it easier to assign a different seed
each time you run the simulation. Follow this procedure for each Initial
seed parameter that you need to set:

1 Assign a value to the MATLAB variable. For example, the code below
defines a variable called initseed.

initseed = 68521;

2 In the Initial seed field of the dialog box, enter the name of the MATLAB
variable. An example is below.

10-14

Running a Series of Simulations

3 Run the simulation using Simulation > Start or the sim function. During
the simulation, the value that the block uses for the initial seed is the one
that you assigned to the MATLAB variable.

4 Repeat steps 1 and 3 if appropriate, using a different value each time.

If you are using the above procedure within an M-file that runs a series
of simulations in a loop, put the variable assignment and the simulation
command (sim) in the M-file. For an example of this approach, see “Example:
Running a Simulation Repeatedly to Gather Results” on page 10-15.

Running Simulations from MATLAB
When you analyze simulation statistics, you typically need to run the
simulation many times. One simulation run, no matter how long, is still a
single sample and probably inadequate for valid statistical analysis. The sim
function enables you to run simulations unattended, while the Discrete Event
Signal to Workspace block writes signal contents to the MATLAB workspace
for subsequent storage or analysis. To learn about this function and block, see
“Running a Simulation Programmatically” in the Simulink documentation
and the reference page for the Discrete Event Signal to Workspace block. This
section provides examples and tips that focus on SimEvents simulations, in
these topics:

• “Example: Running a Simulation Repeatedly to Gather Results” on page
10-15

• “Example: Running a Simulation and Varying a Parameter” on page 10-17

Example: Running a Simulation Repeatedly to Gather Results
Suppose you want to run the M/D/1 Queuing System demo model many times
to check whether the ensemble average for the waiting time is close to the
value predicted by queuing theory. You can do this by modifying the model
to make it suitable for statistical analysis, simulating the modified model
multiple times, and then analyzing the results.

1 Open the model by entering md1 in the MATLAB Command Window.

2 Save the model as md1_stats.mdl in either the current directory or a
writable directory on the MATLAB path.

10-15

10 Using Statistics

3 From the SimEvents Sinks library, drag the Discrete Event Signal to
Workspace block into the model.

4 In the Discrete Event Signal to Workspace block’s dialog box,

• Set Limit data points to last to 1 because only the final value of the
statistic is relevant for this example.

• Set Save format to Array.

5 Create a branch line from the output of the subsystem labeled Waiting
Time Evaluation and connect the branch line to the Discrete Event Signal
to Workspace block.

6 In the Exponential Interarrival Time Distribution block’s dialog box,
set Initial seed to seedvalue. The use of a variable facilitates using a
different set of random numbers in each run. However, do not run the
simulation yet because seedvalue is not defined.

7 Resave the model, which is now suitable for statistical analysis of the
waiting time.

8 To run the simulation repeatedly and capture the statistic from each run,
execute the following code in MATLAB.

% Set up.
load_system('md1_stats'); % Load system if not already loaded.
nruns = 100; % Number of simulation runs
w = zeros(nruns,1); % Preallocate space for results
h = waitbar(0,'Running simulations. Please wait...');
seedarray = ceil(rand(nruns,1)*999999)*2+1;

% Main simulation loop
for k = 1:nruns

waitbar(k/nruns,h); % Update progress indicator.
seedvalue = seedarray(k);
sim('md1_stats'); % Run simulation.
w(k) = simout(2); % Store empirical value of w.

end

w_theor = simout(1); % Store theoretical value.
close(h); % Close progress indicator window.

10-16

Running a Series of Simulations

9 To display some information about the collected statistics, enter the
following code in the MATLAB Command Window.

format long; % Show more digits in Command Window output.
disp('Theoretical value and ensemble average are:');
disp([w_theor, mean(w)]);
disp('Standard devision for empirical values is:');
disp(std(w));
disp('Relative error in ensemble average is:');
disp([num2str(100*abs(w_theor - mean(w))/w_theor), '%']);

Sample output is below. Your results might vary because the initial seed for
the random number generator depends on timing (via the cputime function).

Theoretical value and ensemble average are:
0.33333333333333 0.33163393290150

Standard devision for empirical values is:
0.01961357797243

Relative error in ensemble average is:
0.50982%

Example: Running a Simulation and Varying a Parameter
Suppose you want to run the M/D/1 Queuing System demo model with
different values of the mean arrival rate. You can do this by modifying the
model to make it suitable for statistical analysis with a varying parameter,
simulating the modified model multiple times with different values of the
parameter, and then analyzing the results. Part of the procedure below
is similar to the one in “Example: Running a Simulation Repeatedly to
Gather Results” on page 10-15; however, the filename, MATLAB code, and
instructions regarding the Constant and Arrival Rate Gain blocks are
different.

1 Open the model by entering md1 in the MATLAB Command Window.

2 Save the model as md1_varymean.mdl in either the current directory or a
writable directory on the MATLAB path.

10-17

10 Using Statistics

3 From the SimEvents Sinks library, drag the Discrete Event Signal to
Workspace block into the model.

4 In the Discrete Event Signal to Workspace block’s dialog box,

• Set Limit data points to last to 1 because only the final value of the
statistic is relevant for this example.

• Set Save format to Array.

5 Create a branch line from the output of the subsystem labeled Waiting
Time Evaluation and connect the branch line to the Discrete Event Signal
to Workspace block.

6 In the Exponential Interarrival Time Distribution block’s dialog box, set
Initial seed to ceil(cputime*99999)*2+1. This causes the simulation to
use a different set of random numbers in each run, although the results are
not repeatable.

7 Remove the Arrival Rate Gain block and close the connection gap between
the Constant block (labeled Maximal Arrival Rate, but now signifying the
mean arrival rate) and the subsystem labeled Exponential Interarrival
Time Distribution.

8 Open the dialog box of the Constant block labeled Maximal Arrival Rate and
set Constant value to m, which is a MATLAB variable to be defined later.

9 Remove the model’s callbacks that are not relevant for this modified
version, by executing the following in MATLAB.

set_param('md1_varymean','PostLoadFcn','')
set_param('md1_varymean','CloseFcn','')

10 Resave the model, which is now suitable for statistical analysis of the
waiting time with varying mean arrival rates.

11 To run the simulation repeatedly while varying the mean arrival rate, and
capture the statistic from each run, execute the following code in MATLAB.
Note that it takes some time to run.

% Set up.
load_system('md1_varymean'); % Load system if not yet loaded.
nruns = 100; % Number of simulation runs

10-18

Running a Series of Simulations

mvec = [0.2 : 0.1 : 0.4]; % Values of mean arrival rate
nm = length(mvec); % Number of values in mvec

% Preallocate space for results.
w = zeros(nruns,1);
wavg = zeros(nm,1);
w_theor = zeros(nm,1);

% Vary the mean arrival rate.
for midx = 1:nm

% m is a parameter in the Constant block, so changing m
% changes the mean arrival rate in the simulation.
m = mvec(midx);
disp(['Simulating with mean arrival rate=' num2str(m)]);

% Replicate for each value of m
for k = 1:nruns

sim('md1_varymean'); % Run simulation.
w(k) = simout(2); % Store empirical value of w.

end

wavg(midx) = mean(w); % Average for fixed value of m
w_theor(midx) = simout(1); % Theoretical value

end

12 To plot the average waiting time (averaged over multiple simulations for
each fixed value of mean arrival rate) against mean arrival rate, execute
the following code in MATLAB.

figure; % Create new figure window.
plot(mvec,w_theor,'b.-'); % Plot theoretical curve.
hold on;
plot(mvec,wavg,'r*'); % Plot empirical values.
legend('Theoretical','Empirical','Location','NorthWest')
xlabel('Mean Arrival Rate')
ylabel('Average Waiting Time (s)')
hold off

A sample plot is below.

10-19

10 Using Statistics

Regulating the Simulation Length
When you run a simulation interactively to observe behavior qualitatively,
the stop time of the simulation might not matter. However, when you need
to gather statistics from a simulation, knowing when to end the simulation
is more important. Typical criteria for ending a discrete-event simulation
include the following:

• A fixed amount of time passes

• The cumulative number of entity departures from a particular block crosses
a fixed threshold. This might be analogous to processing a fixed number of
packets, parts, or customers, for example.

• The simulation achieves a particular state, such as an overflow or a
machine failure

Setting a Fixed Stop Time
To run a simulation interactively with a fixed stop time, do the following:

10-20

Running a Series of Simulations

1 Open the Configuration Parameters dialog box by choosing
Simulation > Configuration Parameters in the menu of the model
window.

2 In the dialog box, set Stop time to the desired stop time.

3 Run the simulation by choosing Simulation > Start.

To fix the stop time when running a simulation from MATLAB, use syntax like

sim('model',timespan)

where model is the name of the model and timespan is the desired stop time.

Stopping Based on Entity Count
The basic procedure for stopping a simulation based on the total number of
entity departures is as follows:

1 Find the block’s parameter that enables the departure counter as a signal
output, usually called Number of entities departed. Exceptions are
the Write count to signal port #d parameter of the Entity Departure
Counter block and the Number of entities arrived parameter of the
Replicate and Entity Sink blocks.

2 Set the parameter to On. This causes the block to have a signal output port
corresponding to the entity count.

3 Connect the new signal output port to a Discrete Event Subsystem block,
from the SimEvents Ports and Subsystems library.

4 Double-click the Discrete Event Subsystem block to open the subsystem it
represents.

5 Delete the Discrete Event Outport block labeled Dout.

6 Connect the Discrete Event Inport block labeled Din to a Compare To
Constant block, from the Logic and Bit Operations library in Simulink.

7 In the Compare To Constant block,

• Set Operator to >=.

10-21

10 Using Statistics

• Set Constant value to the desired number of entity departures.

• Set Output data type mode to boolean.

8 Connect the Compare To Constant block to a Stop Simulation block, from
the Sinks library in Simulink. The result should look like the following,
except that your SimEvents block might be a block other than Entity
Departure Counter.

Top-Level Model

Subsystem Contents

See the considerations discussed in “Tips for Using State-Based Stopping
Conditions” on page 10-26 below. They are relevant if you are stopping
the simulation based on an entity count, where “desired state” means the
entity-count threshold.

Stopping Upon Reaching a Particular State
Suppose you want the simulation to end when it achieves a particular state,
such as an overflow or a machine failure. The state might be the only criterion
for ending the simulation, or the state might be one of multiple criteria, each
of which is sufficient reason to end the simulation. An example that uses
multiple criteria is a military simulation that ends when all identified targets

10-22

Running a Series of Simulations

are destroyed or all resources (ammunition, aircraft, etc.) are depleted,
whichever occurs first.

Once you have identified a state that is relevant for ending the simulation,
you typically create a Boolean signal that queries the state and connect the
signal to a Stop Simulation block. Typical ways to create a Boolean signal that
queries a state include the following:

• Connect a signal to a logic block to determine whether the signal satisfies
some condition. See the blocks in the Logic and Bit Operations library in
Simulink. The figure below illustrates one possibility.

Top-Level Model

Subsystem Contents

• Use a Get Attribute block to query an attribute and a logic block to
determine whether the attribute value satisfies some condition. The figure
below illustrates one possibility.

10-23

10 Using Statistics

Top-Level Model

Subsystem Contents

• To end the simulation whenever an entity reaches a particular entity
path, you can end that path with an Entity Sink block, enable that block’s
output signal to count entities, and check whether the output signal is
greater than zero.

Top-Level Model

10-24

Running a Series of Simulations

Subsystem Contents

• Logically combine multiple tests using logic blocks to build the final
Boolean signal that connects to a Stop Simulation block. (A logical OR
operation is implied if your model contains an independent Stop Simulation
block for each of the multiple tests, meaning that the simulation ends when
the first such block processes an input signal whose value is true.) The
figure below illustrates one possibility using the exclusive-OR of two tests,
one of which is in turn the logical AND of two tests.

Top-Level Model

10-25

10 Using Statistics

Subsystem Contents

Tips for Using State-Based Stopping Conditions. When using a state
rather than a time to determine when the simulation ends, keep in mind
the following considerations:

• If the model has a finite stop time, then the simulation might end before
reaching the desired state. Depending on your needs, this might be a
desirable or undesirable outcome. If it is important that the simulation not
stop too early, then you can follow the instructions in “Setting a Fixed Stop
Time” on page 10-20 and use Inf as the Stop time parameter.

• If you set the Stop time parameter to Inf, then you should ensure that
the simulation actually stops. For example, if you want to stop based on an
entity count but the simulation either reaches a deadlock or sends most
entities on a path not involving the block whose departure count is the
stopping criterion, then the simulation might not end.

• Checking for the desired state throughout the simulation might make the
simulation run more slowly than if you used a fixed stop time.

10-26

11

Troubleshooting
Discrete-Event Simulations

Viewing the Event Calendar (p. 11-2) Logging information about events

Viewing Entity Locations (p. 11-8) Logging information about entities
advancing from block to block

Common Problems in SimEvents
Models (p. 11-12)

Some modeling errors and ways to
avoid them

Configuration Parameters for
SimEvents Models (p. 11-32)

SimEvents parameters in the
Configuration Parameters dialog box

Additional troubleshooting techniques are in “Using Plots for Troubleshooting”
on page 9-8.

11 Troubleshooting Discrete-Event Simulations

Viewing the Event Calendar
Knowing which events are on the event calendar at relevant times during the
simulation can help you learn and troubleshoot. SimEvents models offer an
option to have the MATLAB Command Window tell you

• When each event is placed on the event calendar

• When each event is processed

• The list of events on the event calendar

This section describes how to enable this option and interpret the information.
The topics are as follows:

• “Turning Event Logging On” on page 11-2

• “Logging the Processing of Events” on page 11-3

• “Logging the Scheduling of Events” on page 11-4

• “Logging the List of Events” on page 11-4

• “Example: Event Logging” on page 11-6

To create a file containing messages that appear in the MATLAB Command
Window, use the diary function.

Turning Event Logging On
To enable event logging for a particular model that contains one or more
blocks from the SimEvents libraries, use this procedure:

1 Select Simulation > Configuration Parameters from the model
window’s menu to open the Configuration Parameters dialog box.

2 Click SimEvents on the left side of the Configuration Parameters dialog
box.

3 Select one or more of the following options on the right side of the dialog box:

• Display events in event calendar

• Log events when executed

11-2

Viewing the Event Calendar

• Log events when scheduled

Selecting Display events in event calendar disables the other two
options because displaying the events in the event calendar automatically
includes logging events when scheduled and executed. For details, see
“Logging the List of Events” on page 11-4.

The next time you run the simulation, the MATLAB Command Window
displays information about the event calendar.

Logging the Processing of Events
When you select Log events when executed as described in “Turning Event
Logging On” on page 11-2 and run the simulation, the MATLAB Command
Window displays a message like the following each time an event is processed:

SimEvents: Executing @ 1.000000000000000 (T=1.000000000000000

P=300 B='mymodel/Time-Based Entity Generator' N='EntityGeneration')

This indicates that the Time-Based Entity Generator block in a model called
mymodel generates an entity at time 1 and that this event has event priority
300.

The table below lists the pieces of information contained in messages like this.

Portion of Message Description

Executing Distinguishes this message from a
scheduling message described in “Logging
the Scheduling of Events” on page 11-4

T= followed by a number Simulation time at which the event is
processed

P= followed by a number Event priority of the event

B= followed by a block
pathname

Block that processes the event

N= followed by a string Name of the event, such as
EntityGeneration or ServiceCompletion

11-3

11 Troubleshooting Discrete-Event Simulations

Logging the Scheduling of Events
When you select Log events when scheduled as described in “Turning
Event Logging On” on page 11-2 and run the simulation, the MATLAB
Command Window displays a message like the following each time a new
event appears on the event calendar:

SimEvents: Scheduling @ 0.000000000000000 (T=1.000000000000000

P=300 B='mymodel/Time-Based Entity Generator' N='EntityGeneration')

This indicates that at time 0, the Time-Based Entity Generator block in a
model called mymodel schedules an entity generation to occur at time 1 and
that this event has event priority 300.

The table below lists the pieces of information contained in messages like this.

Portion of Message Description

Scheduling Distinguishes this message from an
execution message described in “Logging the
Processing of Events” on page 11-3

@ followed by a number Simulation time at which the scheduling
occurs

T= followed by a number Simulation time at which the event occurs

P= followed by a number Event priority of the event

B= followed by a block
pathname

Block that schedules the event

N= followed by a string Name of the event, such as
EntityGeneration or ServiceCompletion

The processing sequence and the scheduling sequence might differ for
simultaneous events having equal priority.

Logging the List of Events
When you select Display events in event calendar as described in “Turning
Event Logging On” on page 11-2 and run the simulation, the MATLAB
Command Window displays a message like the following each time a new
event appears on the event calendar or is processed:

11-4

Viewing the Event Calendar

SimEvents: Scheduling @ 2.000000000000000 (T=3.000000000000000

P=300 B='mymodel/Time-Based Entity Generator' N='EntityGeneration')

%BEGIN list event in calendar @ 2.000000000000000

SimEvents: Event in calendar @ 2.000000000000000 (T=2.300000000000000

P=500 B='mymodel/Single Server' N='ServiceCompletion')

SimEvents: Event in calendar @ 2.000000000000000 (T=3.000000000000000

P=300 B='mymodel/Time-Based Entity Generator' N='EntityGeneration')

%END list event in calendar @ 2.000000000000000

The message has two key components:

• A line that begins with SimEvents: Scheduling is a scheduling message
as described in “Logging the Scheduling of Events” on page 11-4. The
excerpt above indicates that at time 2, the Time-Based Entity Generator
block in a model called mymodel schedules an entity generation to occur at
time 3 and that this event has event priority 300.

Alternatively, a line that begins with SimEvents: Executing is an event
processing message as described in “Logging the Processing of Events”
on page 11-3.

• Lines between %BEGIN and %END form a list of all events on the event
calendar at a given time, after the scheduling or execution mentioned in
the earlier part of the message has occurred.

The table below describes the pieces of information contained in the list of all
events.

Portion of Message Description

@ followed by a number Simulation time at which the event calendar
is being displayed

T= followed by a number Simulation time at which the event occurs

P= followed by a number Event priority of the event

B= followed by a block
pathname

Block that processes the event

N= followed by a string Name of the event, such as
EntityGeneration or ServiceCompletion

11-5

11 Troubleshooting Discrete-Event Simulations

Example: Event Logging
You can view the event calendar from the first few seconds of simulation of
the M/M/1 Queuing System demo using this procedure:

1 Open the demo by entering mm1 in the MATLAB Command Window or by
using the MATLAB Help browser.

2 Select Simulation > Configuration Parameters from the model
window’s menu to open the Configuration Parameters dialog box.

3 Click SimEvents on the left side of the Configuration Parameters dialog
box.

4 Select Display events in event calendar on the right side of the dialog
box and click OK.

5 Run the simulation for 3 seconds by entering the following in the MATLAB
Command Window:

sim('mm1',3);

Interpreting the Event Logging Messages
The resulting messages in the MATLAB Command Window show you the
state of the event calendar during the simulation:

• The first entity generation event is scheduled at time 0, to occur at time
0. This is because the entity generator has the Generate entity at
simulation start option selected. The event calendar contains the entity
generation event.

SimEvents: Scheduling @ 0.000000000000000 (T=0.000000000000000

P=1 B='mm1/Time-Based Entity Generator' N='EntityGeneration')

%BEGIN list event in calendar @ 0.000000000000000

SimEvents: Event in calendar @ 0.000000000000000 (T=0.000000000000000

P=1 B='mm1/Time-Based Entity Generator')

%END list event in calendar @ 0.000000000000000

• The entity generation event is processed, leaving the event calendar empty.

SimEvents: Executing @ 0.000000000000000 (T=0.000000000000000

11-6

Viewing the Event Calendar

P=1 B='mm1/Time-Based Entity Generator' N='EntityGeneration')

%BEGIN list event in calendar @ 0.000000000000000

%END list event in calendar @ 0.000000000000000

• The entity advances immediately to the server, which schedules a service
completion event. The event calendar contains the service completion event.

SimEvents: Scheduling @ 0.000000000000000 (T=2.991406386946900

P=1 B='mm1/Single Server' N='ServiceCompletion')

%BEGIN list event in calendar @ 0.000000000000000

SimEvents: Event in calendar @ 0.000000000000000 (T=2.991406386946900

P=1 B='mm1/Single Server')

%END list event in calendar @ 0.000000000000000

• The second entity generation event is scheduled for a future time. The
event calendar contains two events: the service completion event and the
entity generation event.

SimEvents: Scheduling @ 0.000000000000000 (T=3.184988194595833

P=1 B='mm1/Time-Based Entity Generator' N='EntityGeneration')

%BEGIN list event in calendar @ 0.000000000000000

SimEvents: Event in calendar @ 0.000000000000000 (T=2.991406386946900

P=1 B='mm1/Single Server')

SimEvents: Event in calendar @ 0.000000000000000 (T=3.184988194595833

P=1 B='mm1/Time-Based Entity Generator')

%END list event in calendar @ 0.000000000000000

• The service completion event is processed, leaving only the entity
generation event on the event calendar.

SimEvents: Executing @ 2.991406386946900 (T=2.991406386946900

P=1 B='mm1/Single Server' N='ServiceCompletion')

%BEGIN list event in calendar @ 2.991406386946900

SimEvents: Event in calendar @ 2.991406386946900 (T=3.184988194595833

P=1 B='mm1/Time-Based Entity Generator')

%END list event in calendar @ 2.991406386946900

11-7

11 Troubleshooting Discrete-Event Simulations

Viewing Entity Locations
Knowing when an entity departs from one block and arrives at another block
during the simulation can help you learn and troubleshoot. SimEvents models
offer an option to have the MATLAB Command Window display information
about entity locations. This section describes how to enable this option and
interpret the information. The topics are as follows:

• “Turning Entity Logging On” on page 11-8

• “Interpreting Entity Logging Messages” on page 11-8

• “Example: Entity Logging” on page 11-9

To create a file containing messages that appear in the MATLAB Command
Window, use the diary function.

Turning Entity Logging On
To enable entity logging for a particular model that contains one or more
blocks from the SimEvents libraries, use this procedure:

1 Select Simulation > Configuration Parameters from the model
window’s menu to open the Configuration Parameters dialog box.

2 Click SimEvents on the left side of the Configuration Parameters dialog
box.

3 Select Log entities advancing from block to block on the right side
of the dialog box:

The next time you run the simulation, the MATLAB Command Window
displays information about entities advancing from block to block.

Interpreting Entity Logging Messages
When you select Log entities advancing from block to block as described
in “Turning Entity Logging On” on page 11-8 and run the simulation, the
MATLAB Command Window displays a message like the following each time
an entity departs from one block and advances to another block:

11-8

Viewing Entity Locations

SimEvents: Entity advancing @ 0.000000000000000

(From='mymodel/Time-Based Entity Generator' To='mymodel/FIFO Queue')

This indicates that at time 0, an entity departs from the Time-Based Entity
Generator block and arrives at the FIFO Queue block, in a model called
mymodel.

The table below lists the pieces of information contained in messages like this.

Portion of Message Description

@ followed by a number Simulation time at which the entity
advances

From= followed by a block
pathname

Block from which the entity departs

To= followed by a block
pathname

Block at which the entity arrives

Example: Entity Logging
By viewing entity locations, you can get information about the model
described in “Example: Using an Attribute to Select an Output Port” in the
Getting Started documentation.

11-9

11 Troubleshooting Discrete-Event Simulations

• At the beginning of the simulation, the first entity advances from the entity
generator to the server.

SimEvents: Entity Advancing @ 0.000000000000000

(From='doc_outsw_attr/Time-Based Entity Generator' To='doc_outsw_attr/Set Attribute')

SimEvents: Entity Advancing @ 0.000000000000000

(From='doc_outsw_attr/Set Attribute' To='doc_outsw_attr/FIFO Queue')

SimEvents: Entity Advancing @ 0.000000000000000

(From='doc_outsw_attr/FIFO Queue' To='doc_outsw_attr/Single Server')

• After completing its service, the first entity departs from the server and
is routed to Entity Sink1.

SimEvents: Entity Advancing @ 1.000000000000000

(From='doc_outsw_attr/Single Server' To='doc_outsw_attr/Output Switch')

SimEvents: Entity Advancing @ 1.000000000000000

(From='doc_outsw_attr/Output Switch' To='doc_outsw_attr/Entity Sink1')

• The second entity advances from the entity generator to the server.

SimEvents: Entity Advancing @ 4.898639080694728

(From='doc_outsw_attr/Time-Based Entity Generator' To='doc_outsw_attr/Set Attribute')

SimEvents: Entity Advancing @ 4.898639080694728

(From='doc_outsw_attr/Set Attribute' To='doc_outsw_attr/FIFO Queue')

SimEvents: Entity Advancing @ 4.898639080694728

(From='doc_outsw_attr/FIFO Queue' To='doc_outsw_attr/Single Server')

• The third entity advances from the entity generator to the queue. (The
third entity cannot advance to the server because the server is busy serving
the second entity.)

SimEvents: Entity Advancing @ 5.234759100998515

(From='doc_outsw_attr/Time-Based Entity Generator' To='doc_outsw_attr/Set Attribute')

SimEvents: Entity Advancing @ 5.234759100998515

(From='doc_outsw_attr/Set Attribute' To='doc_outsw_attr/FIFO Queue')

• At the end of its service time, the second entity departs from the server and
is routed to Entity Sink2. As a result, the third entity advances from the
queue to the server.

SimEvents: Entity Advancing @ 5.898639080694728

(From='doc_outsw_attr/Single Server' To='doc_outsw_attr/Output Switch')

11-10

Viewing Entity Locations

SimEvents: Entity Advancing @ 5.898639080694728

(From='doc_outsw_attr/Output Switch' To='doc_outsw_attr/Entity Sink2')

SimEvents: Entity Advancing @ 5.898639080694728

(From='doc_outsw_attr/FIFO Queue' To='doc_outsw_attr/Single Server')

The entity logging messages do not count or otherwise identify which entity is
advancing. The descriptions above indicate when the first, second, or third
entity is the one that advances because such inferences are straightforward
in this example.

11-11

11 Troubleshooting Discrete-Event Simulations

Common Problems in SimEvents Models
Troubleshooting a discrete-event simulation can be challenging because
blocks that form an entity path operate in coupled ways. The block whose
behavior surprises you might not be the source of a mistake. For example,
after troubleshooting a surprising set of values in the #d output signal from a
server, you might find that the problem is not in the server itself but rather in
the configuration of a gate or switch block in another part of the model.

Some common problems relate to the simultaneity of events and the sequence
in which the events are processed. When events occur at the same value of
the simulation clock, it is because they have a causal relationship to each
other or because their occurrence times happen to match. Because the value
of the simulation clock is a floating-point number, testing two event times for
equality is subject to the inherent limitations of comparing floating-point
numbers using a computer.

This section describes some common problems. Specific symptoms and fixes
are difficult to generalize, but this section offers examples or tips where
feasible.

The problems are presented in these topics:

• “Unexpectedly Simultaneous Events” on page 11-13

• “Unexpectedly Nonsimultaneous Events” on page 11-13

• “Unexpected Processing Sequence for Simultaneous Events” on page 11-16

• “Time-Based Block Not Recognizing Certain Trigger Edges” on page 11-17

• “Incorrect Timing of Signals” on page 11-17

• “Unexpected Use of Old Value of Signal” on page 11-19

• “Effect of Initial Condition on Signal Loops” on page 11-23

• “Loops in Entity Paths Without Storage Blocks” on page 11-26

• “Unexpected Timing of Random Signal” on page 11-29

• “Unexpected Correlation of Random Processes” on page 11-31

11-12

Common Problems in SimEvents Models

Unexpectedly Simultaneous Events
An unexpected simultaneity of events can result from roundoff error in event
times or other floating-point quantities, and might cause the processing
sequence to differ from your expectation about when each event should occur.
Computers’ use of floating-point arithmetic involves a finite set of numbers
with finite precision.

If you have a guess about which events’ processing is suspect, then adjusting
event priorities or using the Instantaneous Event Counting Scope block can
help diagnose the problem. For examples involving event priorities, see
“Example: Race Conditions at a Switch” on page 2-23 and the Event Priorities
demo. For examples using the Instantaneous Event Counting Scope block, see
“Example: Plotting Event Counts to Find Roundoff Error” on page 9-12 and
“Example: Counting Events from Multiple Sources” on page 2-38.

Unexpectedly Nonsimultaneous Events
An unexpected lack of simultaneity can result from roundoff error in event
times or other floating-point quantities. Computers’ use of floating-point
arithmetic involves a finite set of numbers with finite precision.

If roundoff error is very small, then the event logging feature and scope blocks
might not reveal enough precision to confirm whether events are simultaneous
or only close. An alternative technique is to use the Discrete Event Signal to
Workspace block to collect data in MATLAB as in the example below.

If your model requires that certain events be simultaneous, then use modeling
techniques aimed at effecting simultaneity. For examples, see “Example:
Plotting Event Counts to Find Roundoff Error” on page 9-12 and “Example:
Race Conditions at a Switch” on page 2-23.

Example: Discrepancies in Event Times
In the model below, the Time-Based Entity Generator block has a constant
service time of 0.2 and the Infinite Server block has a constant service time
of 1.

11-13

11 Troubleshooting Discrete-Event Simulations

After the first entity completes its service, you might expect the server to
have a simultaneous arrival and departure every 0.2 seconds. However,
roundoff error sometimes prevents the generation of a new entity from being
exactly simultaneous with the service completion of a previous entity. The
plot suggests that the generation events are sometimes, but not always,
processed before the service completion events. This might be unexpected
if the generation events and service completion events have distinct event
priority values.

The Discrete Event Signal to Workspace block records the server’s #n signal
as the workspace variable n. By examining n, you can see detail that is not
apparent from the plot.

11-14

Common Problems in SimEvents Models

times_values = [n.time, n.signals.values];
format short
times_values(90:91,:)

The first column of the output below suggests that two events occur
simultaneously at T=9.4.

ans =

9.4000 6.0000
9.4000 5.0000

To find out whether the events are actually simultaneous, use the hexadecimal
format to view the same data.

format hex
times_values(90:91,:)

The output below shows that the event times in the first column are not equal.
That is, the events are not simultaneous but only nearly simultaneous. As
a result, their event priorities are not relevant. Because roundoff error can
make entity generation events occur slightly before or slightly after service
completion events, the plot above looks irregular.

ans =

4022cccccccccccc 4018000000000000
4022ccccccccccce 4014000000000000

To find the magnitude of the difference, subtract.

format short
times_values(91,1)-times_values(90,1)

The output is

ans =

3.5527e-015

11-15

11 Troubleshooting Discrete-Event Simulations

An alternative model would use the Event-Based Entity Generator block
with a ts input signal having a sample time of 0.2 seconds, instead of the
Time-Based Entity Generator block.

Unexpected Processing Sequence for Simultaneous
Events
An unexpected sequence for simultaneous events could result from the
arbitrary or random handling of events having equal priorities, mentioned in
“Processing Sequence for Simultaneous Events” on page 2-21. The sequence
might even change when you run the simulation again. When the sequence

11-16

Common Problems in SimEvents Models

is arbitrary, you should not make any assumptions about the sequence or
its repeatability.

If you copy and paste blocks that have an event priority parameter, the
parameter values do not change unless you manually change them.

Time-Based Block Not Recognizing Certain Trigger
Edges
Time-based blocks have a slightly different definition of a trigger edge
compared to event-based blocks. If you use event-based signals with Triggered
Subsystem blocks or Stateflow blocks with trigger inputs, then the blocks
might not run when you expect them to. For more information, suggestions,
and an example, see “Zero-Duration Values and Time-Based Blocks” on page
12-10.

Incorrect Timing of Signals
If you use a time-based block to process event-based signals, then the output
signal might be a time-based signal. Depending on your model, you might
notice that

• The output signal assumes a new value at a later time than the event that
caused the last update of the event-based signal.

• The output signal assumes incorrect values.

• An event-based block that uses the output signal, such as an Event-Based
Entity Generator block, operates with incorrect timing.

You can avoid these problems by putting the time-based block in a discrete
event subsystem, as described in Chapter 8, “Controlling Timing Using
Subsystems”. If your time-based block is in a Function-Call Subsystem,
then be sure to select Propagate execution context across subsystem
boundary as described in “Setting Up Function-Call Subsystems in
SimEvents Models” on page 8-32.

Example: Time-Based Addition of Event-Based Signals
The model below adds the lengths of two queues. The queue lengths are
event-based signals, while the Add block is a time-based block. It is important

11-17

11 Troubleshooting Discrete-Event Simulations

that the Add block use up-to-date values of its input signals each time the
queue length changes and that the output signal’s updates correspond to
updates in one of the queue length signals.

If you build this model without having used simeventsstartup previously,
or without using simeventsconfig later, then you might see the plot below.
The incorrect timing is evident because the sum signal has updates at regular
intervals that are smaller than the minimum intergeneration time of the
entity generators.

11-18

Common Problems in SimEvents Models

If you correct the simulation parameters by using simeventsconfig on this
model (with either the 'des' or 'hybrid' input argument), then the plot
reveals correct update times but incorrect values. To check the values, you can
connect the inputs and outputs of the Add block to separate Discrete Event
Signal to Workspace blocks and examine the data in the MATLAB workspace.

A better model uses the technique illustrated in “Example: Adding the
Lengths of Two Queues” on page 8-16.

Unexpected Use of Old Value of Signal
During a discrete-event simulation, multiple events or signal updates can
occur at a fixed value of the simulation clock. If these events and signal
updates are not processed in the sequence that you expect, then you might
notice that a computation or other operation uses a signal value from a
previous time instead of from the current time. Some common situations
occur when

• A block defers the update of an output signal until a departing entity has
finished advancing to a subsequent storage block, but an intermediate
nonstorage block in the sequence uses that signal in a computation or to
control an operation. Such deferral of updates applies to most SimEvents
blocks that have both an entity output port and a signal output port.

For details and an example, see “Interleaved Operations of Storage and
Nonstorage Blocks” on page 12-4.

11-19

11 Troubleshooting Discrete-Event Simulations

• A computation involving multiple signals is performed before all of the
signals have been updated.

For details and an example, see “Sequence of Updates of Output Signals”
on page 3-10.

• An inappropriate processing sequence for simultaneous events causes a
signal update to occur after a block uses that signal in a computation or
to control an operation. See the example below.

• A time-based block’s use of a value of an event-based signal persists until
the next time step of the time-based simulation clock, even if the block
producing the event-based signal has already updated the value. In many
cases, this is the correct behavior of the time-based block.

For an example, see “Example: Plotting Entity Departures to Verify
Timing” on page 9-8.

If you need a time-based block to respond to events, consider using a
discrete event subsystem as described in Chapter 8, “Controlling Timing
Using Subsystems”.

Example: Incorrect Sequence of Event Priorities
In the model below, an inappropriate set of event priorities causes the update
of the Dout signal to occur after the Output Switch has already performed an
operation using its input signal. The goal is to have the third entity in the
simulation use the OUT2 entity output port from the Output Switch block,
while all other entities use the OUT1 port. The Discrete Event Subsystem
block uses the queue block’s #d signal to determine whether three entities
have departed from the queue and output the appropriate port index. The #d
signal is updated only after the entity departing from the queue has arrived at
a subsequent storage block, which is why the model contains a Single Server
block whose service time is 0.

11-20

Common Problems in SimEvents Models

The desired sequence of operations at queue departure times is as follows:

1 The entity advances from the queue to the server.

2 The queue block updates its #d output signal. This automatically follows
from the previous step.

3 The subsystem responds to the update in the #d signal by computing the
appropriate port index.

4 If the port index has changed, then the switch block selects a different
output port.

5 The entity advances from the server to the switch block and then to one of
the entity sinks.

However, the event priority parameters of the Discrete Event Inport block
(inside the Discrete Event Subsystem), Single Server block, and Output
Switch block can either support or contradict the desired sequence listed
above. If the subsystem is executed after the server has completed its service,
then the entity arrives at the switch while the Dout signal still retains
the value corresponding to a previous entity departure. Also, if the switch
schedules its port selection after the server has completed its service, then the
entity arrives at the switch while the switch is still configured for a previous
entity. In summary, the subsystem’s execution and the switch’s port selection
must precede the server’s service completion. The relative values of event
priorities for the subsystem and the switch are not relevant because the events
have a causal relationship; that is, a change in the port selection depends on,
and thus follows, a change in the output signal from the subsystem.

11-21

11 Troubleshooting Discrete-Event Simulations

The event priorities shown in the figure above cause the third entity to
advance to the switch before the switch has responded to the change in the
Dout signal. As a result, the entity that uses the OUT2 entity output port
is the fourth entity, not the third entity. You can see this by comparing the
Dout and last plots, which show the desired port index and the actual port
index, respectively.

A better model would set the Output Switch block’s Switching criterion
parameter to From attribute and connect Dout to the A1 input port of a Set
Attribute block. An attribute-based approach is appropriate here because
the switching criterion is closely related to the series of entities. While the
Output Switch block monitors changes in its p input signal and processes a
port selection event after detecting a change, the Set Attribute block reads its
A1 input signal upon each entity arrival. As before, the subsystem’s execution
must precede the server’s service completion; however, two priorities are
easier to understand than three.

11-22

Common Problems in SimEvents Models

Effect of Initial Condition on Signal Loops
When you create a loop in a signal connection, consider the effect of initial
conditions and be aware that event-based signals might have the first
update upon the first relevant event, not necessarily at the beginning of the
simulation. If you need to specify initial conditions for event-based signals,
see “Defining Initial Conditions for Event-Based Signals” on page 3-18.

Example: Intergeneration Time of Zero at Simulation Start
The model below is problematic at T=0 because the initial reading of the t
input signal representing the intergeneration time is 0. This signal does not
assume a positive value until the first entity departs from the Read Timer
block, which occurs after the first completion of service at T=1.

A better model would use the technique described in “Defining Initial
Conditions for Event-Based Signals” on page 3-18 to specify a nonzero initial
condition for the w output signal from the Read Timer block.

11-23

11 Troubleshooting Discrete-Event Simulations

Example: Absence of Sample Time Hit at Simulation Start
In the model below, the second server’s #n signal has no updates before the
first entity arrival there. As a result, the discrete event subsystem, whose role
is to perform a NOT operation on the #n signal, does not execute before the
first entity arrival at the server. However, no entity can arrive at the server
until the gate opens. This logic causes entities to accumulate in the queue
instead of advancing past the gate and to the servers.

A better model would use the technique described in “Defining Initial
Conditions for Event-Based Signals” on page 3-18 to define either a positive
initial condition for the en input signal to the gate, or a zero initial condition
for the #n output signal from the server.

11-24

Common Problems in SimEvents Models

Example: Faulty Logic in Feedback Loop
The model below generates no entities because the logic is circular. The entity
generator is waiting for a change in its input signal, but the server’s output
signal never changes until an entity arrives or departs at the server.

11-25

11 Troubleshooting Discrete-Event Simulations

A better model would provide the first entity in a separate path. In the revised
model below, the Time-Based Entity Generator block generates exactly one
entity during the simulation, at T=0.

Loops in Entity Paths Without Storage Blocks
An entity path that forms a loop should contain a storage block. Storage
blocks include queues and servers; for a list of storage blocks, see “Interleaved
Operations of Storage and Nonstorage Blocks” on page 12-4. The examples
below illustrate how the storage block can prevent a deadlock or an error.

Example: Deadlock Resulting from Loop in Entity Path
The model below contains a loop in the entity path from the Output Switch
block to the Path Combiner block. The problem occurs when the switch selects
the entity output port OUT2. The entity attempting to depart from the server
looks for a subsequent storage block where it can reside, and it cannot reside
in a routing block. Until the entity confirms that it can advance to a storage
block, the entity cannot depart. However, until it departs, the server is not
available to accept a new arrival. The result is a deadlock.

11-26

Common Problems in SimEvents Models

A better model would include a server with a service time of 0 in the looped
entity path. This storage block provides a place for an entity to reside after it
departs from the Output Switch block. After the service completion event is
processed, the entity advances to the Path Combiner block and back to the
Single Server block. Notice also that the looped entity path connects to the
Path Combiner block’s IN1 entity input port, not IN2. This ensures that
entities on the looped path, not new entities from the queue, arrive back
at the Single Server block.

Example: Error Resulting from Loop in Entity Path
The model below produces an error message when you might expect a
preemption to occur. The model is contrived so that at T=4.5, a high-priority
entity arrives at the Priority Queue and makes the queue full. The queue
places the entity at the head of the queue because of the priority sorting.
The server considers preempting the current entity to permit the arrival of
the new high-priority entity. However, if the entity currently in the server
departed via the P entity output port of the server, then it would need to

11-27

11 Troubleshooting Discrete-Event Simulations

advance to the Path Combiner block and back at the Priority Queue block.
Until the high-priority entity actually arrives at the server, the queue is full.
As a result, the P entity output port of the server is blocked.

A better model would prevent the P port from being blocked. One option is
to place a server block in the looped entity path.

11-28

Common Problems in SimEvents Models

Unexpected Timing of Random Signal
When you use the Event-Based Random Number block to produce a random
event-based signal, the block infers from a subsequent block the events upon
which to generate a new random number from the distribution. The sequence
of times at which the block generates a new random number depends on the
port to which the block is connected and on events occurring in the simulation.
To learn how to use this block, see “Generating Random Signals” on page 3-4.

Example: Invalid Connection of Event-Based Random Number
Generator
The model below is incorrect because the Event-Based Random Number
block cannot infer from the p input port of an Output Switch block when to
generate a new random number. The Output Switch block is designed to
listen for changes in its p input signal and respond when a change occurs;
that is, the Output Switch cannot cause changes in the input signal value or
tell the random number generator when to generate a new random number.
The p input port of the Output Switch block is called a reactive port and it is

11-29

11 Troubleshooting Discrete-Event Simulations

not valid to connect a reactive signal input port to the Event-Based Random
Number block.

If your goal is to generate a new random number corresponding to each entity
that arrives at the switch, then a better model connects the Event-Based
Random Number block to a Set Attribute block and sets the Output Switch
block’s Switching criterion parameter to From attribute. The random
number generator then generates a new random number upon each entity
arrival at the Set Attribute block. The connection of the Event-Based Random
Number block to the A1 input port of the Set Attribute block is a supported
connection because the A2 port is a notifying port. To learn more about
reactive ports and notifying ports, see the reference page for the Event-Based
Random Number block.

11-30

Common Problems in SimEvents Models

Unexpected Correlation of Random Processes
An unexpected correlation between random processes could result from equal
initial seeds in different dialog boxes. If you copy and paste blocks that have
an Initial seed parameter, the parameter values do not change unless you
manually change them. Such blocks include

• Time-Based Entity Generator

• Event-Based Random Number

• Uniform Random Number

• Random Number

• Blocks in the Routing library

11-31

11 Troubleshooting Discrete-Event Simulations

Configuration Parameters for SimEvents Models
When a model contains at least one SimEvents block, the model’s
Configuration Parameters dialog box has a tab with parameters specific to
discrete-event simulation.

Execution order of simultaneous events
If you select Arbitrary, an internal algorithm determines the sequence
for processing simultaneous events having equal priorities. If you select
Randomized, all possible sequences have equal probability. In either
case, the processing sequence might be different from the sequence
in which the events were scheduled on the event calendar. For more
information, see “Events with Equal Priorities” on page 2-20.

Seed for event randomization
The initial seed of the random number generator used to determine the
sequence for processing simultaneous events having equal priorities.
For a given seed, the generator’s output is repeatable. This field
appears only if you set Execution order of simultaneous events
to Randomized.

Display events in event calendar
If you select this option, the MATLAB Command Window displays a
message and the list of events in the event calendar, each time an event
is either scheduled or processed. For more information, see “Logging
the List of Events” on page 11-4.

Log events when executed
If you select this option, the MATLAB Command Window displays a
message each time an event is processed. For more information, see
“Logging the Processing of Events” on page 11-3.

11-32

Configuration Parameters for SimEvents Models

Log events when scheduled
If you select this option, the MATLAB Command Window displays a
message each time an event is scheduled on the event calendar. For
more information, see “Logging the Scheduling of Events” on page 11-4.

Log entities advancing from block to block
If you select this option, the MATLAB Command Window displays
information about entities advancing from block to block. For more
information, see “Viewing Entity Locations” on page 11-8.

11-33

11 Troubleshooting Discrete-Event Simulations

11-34

12

How SimEvents Works

Complementing the information in “How Simulink Works” and “Simulating
Dynamic Systems” in the Simulink documentation, this section describes
some aspects that are different for models that involve both time-based and
event-based processing.

Notifications and Queries Among
Blocks (p. 12-2)

When and why SimEvents blocks
interact with each other, and the
impact on simulation behavior

Interleaved Operations of Storage
and Nonstorage Blocks (p. 12-4)

Nonlinear sequence of block
operations and the impact on
simulation behavior

Zero-Duration Values and
Time-Based Blocks (p. 12-10)

Caveats and techniques for working
with multivalued signals

12 How SimEvents Works

Notifications and Queries Among Blocks
In a variety of situations, a SimEvents block notifies other blocks about
changes in its status or queries other blocks about their status. These
interactions among blocks are essential to the proper functioning of a
discrete-event simulation. The interactions occur automatically without being
reported to you explicitly.

This section gives examples of several types of notifications and queries. The
topics are

• “Querying Whether a Subsequent Block Can Accept an Entity” on page 12-2

• “Notifying Blocks About Status Changes” on page 12-3

Querying Whether a Subsequent Block Can Accept
an Entity
Before a SimEvents block outputs an entity, it queries the next block to
determine whether that block can accept the entity. For example,

• When an entity arrives at an empty FIFO Queue block, the queue queries
the next block. If that block can accept an entity, the queue outputs the
entity at the head of the queue; otherwise, the queue holds the entity.

• While a Single Server block is busy serving, it does not query the next
block. Upon completion of the service time, the server queries the next
block. If that block can accept an entity, the server outputs the entity that
has completed its service; otherwise, the server holds the entity.

• When an entity attempts to arrive at a Replicate block, the block queries
each of the blocks connected to its entity output ports. If all of them can
accept an entity, then the Replicate block copies its arriving entity and
outputs the copies; otherwise, the block does not permit the entity to arrive
there and the entity must stay in a preceding block.

• When a Time-Based Entity Generator block generates a new entity, it
queries the next block. If that block can accept an entity, then the generator
outputs the new entity; otherwise, the behavior of the Time-Based Entity
Generator block depends on the value of its Response when blocked
parameter.

12-2

Notifications and Queries Among Blocks

• When a block (for example, a Single Server block) attempts to advance an
entity to the Input Switch block, the server uses a query to check whether it
is connected to the currently selected entity input port of the Input Switch
block. If so, the Input Switch queries the next block to determine whether
it can accept the entity because the Input Switch block cannot hold an
entity for a nonzero duration.

Notifying Blocks About Status Changes
When a SimEvents block undergoes certain kinds of status changes, it notifies
other blocks of the change. This notification might cause the other blocks to
change their behavior or status in some way, depending on the circumstances.
For example,

• When an entity departs from a Single Server block, it notifies the preceding
block that the server’s entity input port has changed from unavailable
to available.

• When an entity departs from a queue that was full to capacity, the queue
notifies the preceding block that the queue’s entity input port has changed
from unavailable to available.

• When a Path Combiner block receives notification that the next block’s
entity input port has changed from unavailable to available, the Path
Combiner block’s entity input ports also become available. The block
notifies preceding blocks that its entity input ports are available.

This case is subtle because the Path Combiner block usually has more than
one block to notify, and the sequence of notifications can be significant. See
the block’s reference page for more information about the options.

12-3

12 How SimEvents Works

Interleaved Operations of Storage and Nonstorage Blocks
At all simulation times from an entity’s generation to destruction, the entity
resides in a block. Blocks capable of holding an entity for a nonzero duration
are called storage blocks. Blocks that permit an entity arrival but must output
the entity at the same value of the simulation clock are called nonstorage
blocks. During a simulation, whenever an entity departs from a block, the
application processes enough queries, departures, arrivals, and other block
operations until the entity arrives at a subsequent storage block. Some
block operations, including the updates of statistical output signals that are
intended to be updated after the entity’s departure, are deferred until after
the entity’s arrival at a subsequent storage block.

An important consequence of the deferral of block operations is that certain
operations of storage and nonstorage blocks might become interleaved. You
might want to insert storage blocks in key locations along entity paths in your
model to change the sequence of block operations, as illustrated in “Example:
Sequence of Departures and Statistical Updates” on page 12-5.

Storage Blocks

• Blocks in Queues library (However, these can act like nonstorage blocks in
some circumstances; see the note below.)

• Blocks in Servers library

• Blocks in Entity Generators library

• Entity Sink block

• Attribute Scope, X-Y Attribute Scope, and Instantaneous Entity Counting
Scope blocks when configured as a sink, that is, without an entity output
port

Note In the special case of an entity arriving at an empty queue whose
entity output port is not blocked, the queue acts like a nonstorage block in
that block operations are deferred until the entity’s arrival at a storage block
subsequent to the queue.

12-4

Interleaved Operations of Storage and Nonstorage Blocks

Nonstorage Blocks

• Blocks in Routing library

• Blocks in Gates library

• Blocks in Timing library

• Blocks in Probes library

• Blocks in Attributes library

• Attribute Scope, X-Y Attribute Scope, and Instantaneous Entity Counting
Scope blocks when configured with an entity output port

• Entity Departure Event to Function-Call Event block

• Entity-Based Function-Call Event Generator block

Example: Sequence of Departures and Statistical
Updates
Consider the sequence of operations in the Time-Based Entity Generator, Set
Attribute, and Attribute Scope blocks shown below.

At each time T = 1, 2, 3,..., 10, Simulink processes the following operations in
the order listed:

Order Operation Block

1 Entity generation Time-Based Entity Generator

2 Entity departure Time-Based Entity Generator

3 Arrival at nonstorage block Set Attribute

4 Assignment of attribute using value
at A1 signal input port

Set Attribute

5 Entity departure Set Attribute

12-5

12 How SimEvents Works

Order Operation Block

6 Arrival at storage block Attribute Scope

7 Update of plot Attribute Scope

8 Update of signal at #d signal output
port

Time-Based Entity Generator

The final operation of the Time-Based Entity Generator block is deliberately
processed after operations of subsequent blocks in the entity path are
processed. This explains why the plot shows a value of 0, not 1, at T=1.

Altering the Processing Sequence
If you want to be sure that the Set Attribute block reads the value at the A1
signal input port after the Time-Based Entity Generator block has updated
its #d output signal, then insert a storage block between the two blocks. In
this simple model, you can use a Single Server block with a Service time
parameter of 0. The model, table, and plot are below.

12-6

Interleaved Operations of Storage and Nonstorage Blocks

Order Operation Block

1 Entity generation Time-Based Entity Generator

2 Entity departure Time-Based Entity Generator

3 Arrival at storage block Single Server

4 Update of signal at #d signal output
port

Time-Based Entity Generator

5 Service completion Single Server

6 Entity departure Single Server

7 Arrival at nonstorage block Set Attribute

8 Assignment of attribute using value
at A1 signal input port

Set Attribute

9 Entity departure Set Attribute

10 Arrival at storage block Attribute Scope

11 Update of plot Attribute Scope

Consequences of Inserting a Storage Block
If the storage block you have inserted to alter the processing sequence holds
the entity longer than you expect (beyond the zero-duration service time, for
example), be aware that your simulation might change in other ways. You
should consider the impact of either inserting or not inserting the storage
block.

12-7

12 How SimEvents Works

For example, suppose you add a gate block to the preceding example and view
the average intergeneration time, w, of the entity generator block. When the
gate is closed, a newly generated entity cannot advance immediately to the
scope block. Whether this entity stays in the entity generator or a subsequent
server block affects the w signal, as shown in the figures below.

Model with Gate and Without Storage Block

When a storage block is present, the first pending entity stays there instead
of in the entity generator. The earlier departure of the first entity from the
entity generator increases the value of the w signal.

12-8

Interleaved Operations of Storage and Nonstorage Blocks

Model with Gate and Storage Block

12-9

12 How SimEvents Works

Zero-Duration Values and Time-Based Blocks
Because time-based simulations involve signals that assume a unique value
at each value of the simulation clock, some blocks designed for time-based
simulations recognize only one value of a signal per time instant. Because
zero-duration values commonly occur in discrete-event simulations (for
example, statistical output signals from SimEvents blocks), you should be
aware of techniques for working with zero-duration values. The table below
lists examples of time-based blocks that recognize one signal value per time
instant, along with similar blocks or techniques that recognize multivalued
signals.

Time-Based Block Block or Technique for Working with
Multivalued Signals

Scope Signal Scope in the SimEvents Sinks library

To Workspace Discrete Event Signal to Workspace in the SimEvents
Sinks library. Alternatively, put the To Workspace
block in a discrete event subsystem.

Triggered
Subsystem

Discrete Event Subsystem in the SimEvents
Ports and Subsystems library, with the Discrete
Event Inport block configured to execute the
subsystem upon trigger edges. Alternatively, use the
Signal-Based Event to Function-Call Event block in
the Event Translation library to convert the trigger
signal to a function call, and then use a Function-Call
Subsystem instead of a Triggered Subsystem.

Stateflow with a
trigger input signal

Use the Signal-Based Event to Function-Call Event
block in the Event Translation library to convert
the trigger signal to a function call, then call the
Stateflow block with a function-call signal instead
of a trigger signal.

For an example comparing the Scope viewer with the Signal Scope block, see
“Comparison with Time-Based Plotting Tools” on page 9-15.

12-10

Zero-Duration Values and Time-Based Blocks

Example: Using a #n Signal as a Trigger
Suppose you want to call a subsystem each time the #n signal from a Single
Server block rises from 0 to 1. This signal is 0 when the server is not storing
an entity and 1 when the server is storing an entity. It is common for an
entity to arrive at a server at the same time instant that the previous entity
departed from the server. In this case, the #n signal changes from 1 to 0 and
back to 1 in the same time instant. A time-based block that recognizes only
one value of a signal per time instant might not recognize a rising edge that
occurs in a time interval of length zero.

This example uses a Counter Free-Running block inside a subsystem to count
the number of times the subsystem is called. (Be aware that the Counter
Free-Running block starts counting from zero, not one.)

The discrete-event portion of the simulation involves a D/D/1 queuing system
in which the server is never idle for a nonzero period of time. As a result, the
#n signal exhibits many zero-duration values, shown in the plot below.

The example uses two approaches to try to call the subsystem each time the
server’s #n signal rises from 0 to 1:

12-11

12 How SimEvents Works

• The approach using a Triggered Subsystem is unsuitable because it does
not count changes that occur in a time interval of length zero. You can see
from the Display block that the triggered subsystem is never called.

• The approach using function calls is appropriate because the Signal-Based
Event to Function-Call Event block recognizes rising edges of #n even when
they involve zero-duration values. The block converts these rising edges
into function calls to which the Function-Call Subsystem responds.

12-12

13

Demonstration Models

Tutorial Demos (p. 13-2) Models illustrating how to use
SimEvents blocks

Queuing Systems (p. 13-7) Models involving queue-server
systems

Application Demos (p. 13-16) Models for specific discrete-event
applications

13 Demonstration Models

Tutorial Demos
Tutorial demos include

• “Attributes: Data Within Entities” on page 13-2

• “Service Time From Attribute” on page 13-3

• “Specifying Service Time in Single Server” on page 13-3

• “Specifying Service Time in Infinite Server Block” on page 13-3

• “Single Server Block Versus Infinite Server Block” on page 13-3

• “Start Timer and Read Timer Blocks” on page 13-4

• “Release Gate: Value Change Versus Trigger” on page 13-4

• “Input Switching Using Signal” on page 13-4

• “Output Switching Using Signal” on page 13-4

• “Path Combiner Versus Input Switch” on page 13-5

• “Time-Driven and Event-Driven Addition” on page 13-5

• “Counting Instantaneous Events” on page 13-6

• “Preload Queue with Entities” on page 13-6

Attributes: Data Within Entities
This model demonstrates how entities carry data from block to block. A piece
of such data is called an attribute. The attribute can be read by a subsequent
block.

The Set Attribute block assigns an EntityIndex attribute in every entity
that arrives at its input port. The value for this attribute comes from the
Event-Based Random Number block connected to the A1 port of the Set
Attribute block.

The Get Attribute block reads the value of the EntityIndex attribute in each
arriving entity and writes this value to the A1 signal output port.

13-2

Tutorial Demos

Service Time From Attribute
This model demonstrates one way to use attributes of entities.

The Set Attribute block attaches a ServiceTime attribute to each arriving
entity. The value for this attribute is the current value of the Repeating
Sequence Stair block. The Single Server block, which is configured to read
service time from an attribute, delays each arriving entity by the value of
that entity’s ServiceTime attribute. The Departing Entity Service Time
plot shows the times at which each entity completes service and leaves the
Single Server block.

Specifying Service Time in Single Server
On the left side of this model, the service time for the single server is specified
via the myServiceTime attribute of every entity arriving at this block. The
value of myServiceTime is specified as 1.5 seconds. The plot labeled Number
of entities departed1 shows that the entities depart from the Single Server
block every 1.5 seconds.

On the right side, the service time for the single server is specified via the
signal from the Constant block. The value of the signal is 1.5. The plot labeled
Number of entities departed2 shows that the entities depart from the Single
Server block every 1.5 seconds.

Specifying Service Time in Infinite Server Block
On the left side of this model, the service time for the Infinite Server block
is specified via the myServiceTime attribute of every entity arriving at this
block. The value of myServiceTime is specified as 1.5 seconds. The plot labeled
Number of entities departed1 shows that every entity is delayed 1.5 seconds.

On the right side, the service time for the Infinite Server block is specified via
the signal from the Constant block. The value of this signal is 1.5 seconds.
The plot labeled Number of entities departed2 shows that every entity is
delayed 1.5 seconds.

Single Server Block Versus Infinite Server Block
On the left side of this model, the Time-Based Entity Generator block
generates entities faster than the Single Server block processes them. The IN

13-3

13 Demonstration Models

port of the Single Server block is unavailable while the block serves an entity
because the Single Server block can store at most one entity at a time.

On the right side, the Time-Based Entity Generator block generates entities
faster than the Infinite Server block processes them. The IN port of the
Infinite Server block is always available because this block can store infinitely
many entities at a time.

Start Timer and Read Timer Blocks
This model shows how to use to the Start Timer and the Read Timer blocks to
measure entity-based delays.

The Start Timer block starts a specified timer (equivalent to time-stamping
an entity) for each arriving entity.

The Read Timer block reads this timer for each entity and computes the delay
that the entity incurred between the two timer blocks.

Release Gate: Value Change Versus Trigger
This model compares the change-in-signal and Trigger modes of the Release
Gate block. The Gating Signal scope shows the signal used to open the gates.

The change-in-signal gate opens whenever the gating signal changes. The
triggered gate opens whenever the gating signal changes from zero to positive,
or vice versa.

Input Switching Using Signal
In this model, the Input Switch block determines which input port to accept
entities from by reading values from the p input port. These values are shown
in the plots. The markers on the lines in these plots indicate times at which
entities pass through the Input Switch block.

Output Switching Using Signal
In this model, the Set Attribute block sets the Index attribute for the entities
passing through. The Output Switch block chooses the entity path as specified

13-4

Tutorial Demos

by the value on the p input port. The scopes plot the Index attribute to show
which entity traveled via each path.

Path Combiner Versus Input Switch
This model contrasts the Path Combiner block and the Input Switch block.
The Path Combiner block accepts entities as they arrive at any port. The
Input Switch accepts entities only from the port that is selected, where the
selection changes in a round-robin fashion with the passage of each entity.

In the upper part of the model, entities from the high-priority entity generator
arrive at the Path Combiner block before simultaneously generated entities
having a lower priority. The plots from the Path Combiner block reflect the
prioritized order in which the entities arrive at and pass through the Path
Combiner block.

In the lower part of the model, the Input Switch block permits arrival only
at the selected port. The prioritization of entity generation events does not
influence the switch block. The plots from the Input Switch block reflect the
ascending (round-robin) order in which the entities are selected by the Input
Switch block.

Time-Driven and Event-Driven Addition
This model demonstrates the difference between time-based blocks and the
event-based operations inside a discrete event subsystem.

The two FIFO Queue blocks independently update their #n signals when
entities arrive or depart. The model adds the #n signals in two ways:

• A Sum block at the top level of the model adds the #n signals at times
determined by the time-based solver. This block’s output is temporarily
inaccurate between a change in #n and the next time step. Furthermore,
this block adds the signals at all time steps, even when neither of the #n
signals has been updated.

• A Sum block inside a discrete event subsystem adds the #n signals
precisely upon each update of either signal. The subsystem’s awareness
of events makes the sum accurate at all times.

13-5

13 Demonstration Models

Counting Instantaneous Events
In this model, the Instantaneous Event Counting Scope block counts
instantaneous signal-based events in a statistical output signal from a
gate block, while the Instantaneous Entity Counting Scope block counts
instantaneous entity departures from a server block.

Preload Queue with Entities
This model loads a queue with entities at the beginning of the simulation. In
the Function-Call Generator block,

• Sample time exceeds the simulation stop time.

• Number of iterations is the number of entities to create at T=0.

13-6

Queuing Systems

Queuing Systems
Queuing system demos include

• “M/M/1 Queuing System” on page 13-7

• “M/D/1 Queuing System” on page 13-9

• “G/G/1 Queuing System and Little’s Law” on page 13-10

• “Single Server Versus N-Server” on page 13-13

• “Single Queue Versus Multiple Queues” on page 13-13

• “A Queuing System with Discouraged Arrivals” on page 13-13

• “Prioritized Queuing Policy Comparison” on page 13-15

• “Preemption Policy Comparison” on page 13-15

M/M/1 Queuing System
This model contains a single-queue single-server system having a single
traffic source and an infinite storage capacity. In the notation, the M stands
for Markovian; M/M/1 means that the system has a Poisson arrival process,
an exponential service time distribution, and one server. Queuing theory
provides exact theoretical results for some performance measures of an M/M/1
queuing system and this model makes it easy to compare empirical results
with the corresponding theoretical results.

Structure of the Model
The model includes the components listed below.

Component Description

Time-Based Entity
Generator block

Models a Poisson arrival process by generating
entities (also known as “customers” in queuing
theory).

Exponential
Interarrival Time
Distribution subsystem

Creates a signal representing the interarrival
times for the generated entities. The interarrival
time of a Poisson arrival process is an exponential
random variable.

13-7

13 Demonstration Models

Component Description

FIFO Queue block Stores entities that have yet to be served.

Single Server block Models a server whose service time has an
exponential distribution.

Results and Displays
The model includes these visual ways to understand its performance:

• Display blocks that show the waiting time in the queue and the server
utilization

• A scope showing the number of entities (customers) in the queue at any
given time

• A scope showing the theoretical and empirical values of the waiting time
in the queue, on a single set of axes. You can use this plot to see how the
empirical values evolve during the simulation and compare them with
the theoretical value.

Theoretical Results
Queuing theory provides the following theoretical results for an M/M/1 queue
with an arrival rate of λ and a service rate of µ:

• Mean waiting time in the queue =

1 1
µ λ µ−

−

The first term is the mean total waiting time in the combined queue-server
system and the second term is the mean service time.

• Utilization of the server = λ/µ

Experimenting with the Model
Move the Arrival Rate Gain slider during the simulation and observe the
change in the queue content, shown in the Q Content Scope.

13-8

Queuing Systems

References

[1] Kleinrock, Leonard, Queueing Systems, Volume I: Theory, New York,
Wiley, 1975.

M/D/1 Queuing System
This model contains a single-queue single-server system having a Poisson
arrival process and a server with constant service time. The queue has an
infinite storage capacity. In the notation, the M stands for Markovian; M/D/1
means that the system has a Poisson arrival process, a deterministic service
time distribution, and one server.

Structure of the Model
The model includes the components listed below.

Component Description

Time-Based Entity
Generator block

Models a Poisson arrival process by generating
entities (also known as “customers” in queuing
theory).

Exponential
Interarrival Time
Distribution subsystem

Creates a signal representing the interarrival
times for the generated entities. The interarrival
time of a Poisson arrival process is an exponential
random variable.

FIFO Queue block Stores entities that have yet to be served.

Single Server block Models a server having a constant service time.

This model is similar to the M/M/1 Queuing System model, except that the
service time in this model is constant.

Results and Displays
The model includes these visual ways to understand its performance:

• A Display block that shows the waiting time in the queue

• A scope showing the number of entities (customers) in the queue at any
given time

13-9

13 Demonstration Models

• A scope showing the theoretical and empirical values of the mean waiting
time in the queue, on a single set of axes. You can use this plot to see how
the empirical values evolve during the simulation and compare them with
the theoretical value.

Theoretical Results
According to queuing theory, the mean waiting time in the queue equals

1
2

1
2()µ λ µ−

−

where λ is the arrival rate and µ is the service rate. This duration is half the
theoretical mean waiting time in the queue for the M/M/1 queuing system
with the same arrival rate and service rate.

Experimenting with the Model
Move the Arrival Rate Gain slider during the simulation and observe the
change in the mean waiting time using the Display block labeled Queue
Waiting Time.

References

[1] Kleinrock, Leonard, Queueing Systems, Volume I: Theory, New York,
Wiley, 1975.

G/G/1 Queuing System and Little’s Law
This model contains a single-queue single-server system in which the
interarrival time and the service time are uniformly distributed with fixed
means of 1.1 and 1, respectively. The queue has an infinite storage capacity.
In the notation, the G stands for a general distribution with a known mean
and variance; G/G/1 means that the system’s interarrival and service times
are governed by such a general distribution, and that the system has one
server. You can change the variances of the uniform distributions. You can
use this model to examine Little’s law.

13-10

Queuing Systems

Structure of the Model
The model includes the components listed below.

Component Description

Time-Based Entity
Generator block

Source of entities (also known as “customers” in
queuing theory).

Uniform Distribution
for Interarrival Time
subsystem

Creates a signal representing the interarrival
times for the generated entities. After you set
the distribution’s variance using the Arrival
Process Variance block, the subsystem computes
a uniform random variate with the chosen
variance and mean 1.1. The variance must be
at most (1.1^2)/3 in order for the subsystem
to return only positive values; for details, select
the Uniform Distribution for Interarrival Time
subsystem and choose Edit > Look Under
Mask.

FIFO Queue block Stores entities that have yet to be served.

Single Server block Models a server whose service time has a uniform
distribution.

Uniform Distribution
for Service Time
subsystem

Creates a signal representing the service time
for entities in the server. This is similar to the
subsystem that computes interarrival times,
except that the mean service time is 1 and hence
the maximum variance is 1/3.

Results and Displays
The model includes these visual ways to understand its performance:

• Display blocks that show the queue workload, average waiting time in the
queue, average service time, and server utilization.

• A scope showing the number of entities (customers) in the queue at any
given time

• A scope comparing empirical and theoretical ratios, as described in “Little’s
Law” on page 13-12

13-11

13 Demonstration Models

Little’s Law
You can use this model to verify Little’s law, which states the linear
relationship between average queue length and average waiting time in the
queue. In particular, the expected relationship is as follows:

Average queue length = (Mean arrival rate)(Average waiting time)

The FIFO Queue block computes the current queue length and average
waiting time in the queue. The subsystem called Little’s Law Evaluation
computes the ratio of average queue length (derived from the instantaneous
queue length via integration) to average waiting time, as well as the ratio of
mean service time to mean arrival time. The two ratios appear on the plot
labeled Arrival Rate: Theoretical vs. Simulation Results.

Another way to interpret the equation above is that, given a normalized mean
service time of 1, you can use the average waiting time and average queue
length to derive the system’s arrival rate.

Little’s Law Applied to the Server. You can also use this model to verify
the linear relationship that Little’s law predicts between the server utilization
and the average service time. The Single Server block computes the server
utilization and average waiting time in the server. Because each entity can
depart from the server immediately upon completing service, waiting time is
equivalent to service time for the server in this model.

Experimenting with the Model
Move the Arrival Process Variance slider or the Service Process Variance
slider during the simulation and observe how the queue content changes.
When traffic intensity is high, the average waiting time in the queue is
approximately linear in the variances of the interarrival time and service
time. The larger the variances are, the longer an entity has to wait, and the
more entities are waiting in the system.

References

[1] Kleinrock, Leonard, Queueing Systems, Volume I: Theory, New York,
Wiley, 1975.

13-12

Queuing Systems

Single Server Versus N-Server
This model compares a single-server queuing system with an N-server system.
The single server can serve three times as fast as each of the three servers
in the N-Server block.

The displays show that the faster single server achieves smaller delays than
the set of three slower servers. The throughput of both systems is the same.

Single Queue Versus Multiple Queues
This model compares a single-queue, multiple-server system with a
multiple-queue, multiple-server system. Both systems share the same
average service time and achieve the same throughput. However, the
single-queue system exhibits shorter delays than the multiple-queue system.

The comparison of these two systems is the classic “queuing for multiple bank
tellers” problem and demonstrates that forming a single line for multiple
tellers reduces the average delay, compared to forming one line for each teller.

A Queuing System with Discouraged Arrivals
This model contains a queuing system in which feedback influences the
arrival rate. As more entities accumulate in the queue-server pair, the entity
generator slows its arrival rate. This model illustrates how to use statistical
signals from SimEvents blocks not only to report data but also to control the
dynamics of the simulation.

Structure of the Model
The model includes the components listed below.

Component Description

Time-Based Entity
Generator block

Source of entities (also known as “customers” in
queuing theory).

FIFO Queue block Stores entities that have yet to be served.

Single Server block Models a server whose service time has an
exponential distribution.

13-13

13 Demonstration Models

Component Description

Interarrival Time
Distribution with
Discouraged Rate
subsystem

Computes interarrival times for the entities in
the queuing system using a variable arrival rate
that depends on the following two statistical
signals:
• The #n output from the FIFO Queue block,

which reports the number of entities in the
queue

• The #n output from the Single Server block,
which reports the number of entities in the
server (either 0 or 1 for a single server)

Specifically, when k customers are in the
queue-server pair, the arrival rate is α/(k+1). In
this model, α = 1.

Exponential Service
Time Distribution
subsystem

Creates a signal representing the service time
for entities in the server.

Results and Displays
The model includes these visual ways to understand its performance:

• A Display block that shows the average waiting time in the queue

• A scope comparing empirical and theoretical values for the average waiting
time in the queue

Theoretical Results
According to queuing theory, the mean waiting time in the queue equals

1

1

1
2 1µ µµ(e)/−

−−

where µ is the service rate and the arrival rate is 1 when the queuing system
is empty.

13-14

Queuing Systems

Experimenting with the Model
Move the Service Rate Gain slider during the simulation and observe the
change in the queue waiting time, shown in the Waiting Time Comparison
Scope.

References

[1] Kleinrock, Leonard, Queueing Systems, Volume I: Theory, New York,
Wiley, 1975.

Prioritized Queuing Policy Comparison
This model uses the Priority Queue block to implement queuing policies based
on service time. Compare the performance of two prioritized queuing policies
with the first-in, first-out (FIFO) queuing policy.

Preemption Policy Comparison
This model compares three policies for working with entities that have been
preempted from a server:

• Preemption with discard — A preempted entity cannot reenter the server

• Preemption with restart — A preempted entity reenters the server and
requires the same service time that it required the first time

• Preemption with resume — A preempted entity reenters the server
and requires only the residual service time that remained at the time of
preemption

13-15

13 Demonstration Models

Application Demos
Application-specific demos include

• “Shared Access Communications Media” on page 13-16

• “Dynamic Voltage Scaling Using Online Gradient Estimation” on page
13-16

• “Comparison of Routing Policies” on page 13-19

• “F-14 Flight Control Over a Network” on page 13-19

• “Selective-Repeat Automatic Repeat Request” on page 13-19

• “Tank Filling Station” on page 13-20

• “Astable Multivibrator Circuit” on page 13-21

Shared Access Communications Media
This model is an abstraction of a communications bus or shared media.
Each transmitter that uses the bus has exclusive access until the use is
completed. In this model, transmit node 1 is sending to receive node 2, and
vice versa. Background traffic from other nodes in the network is modeled in
the aggregate. You can adjust the aggregate traffic for the other nodes using a
slider in the Average Arrival Rate block.

Using the plots, you can monitor bus/media utilization, queue lengths,
average waiting times, and the number of dropped packets.

The bus/media abstraction is enclosed in a subsystem to facilitate copying into
another model. For example, you can explore further by modeling the delays
incurred over a bus between two processors.

Dynamic Voltage Scaling Using Online Gradient
Estimation
This model simulates an AT90S8535 microcontroller that uses a dynamic
voltage scaling (DVS) feature to adjust the input voltage depending on the
workload. By lowering the input voltage when the workload is low, the
microcontroller reduces energy consumption while guaranteeing quality
of service. The DVS controller is based on an online gradient estimation

13-16

Application Demos

technique called infinitesmal perturbation analysis (IPA). In a single
simulation of a parameterized system — not the large number of simulations
required by a traditional finite-difference approach — IPA can provide
sensitivity information that yields a first-order approximation of the system’s
performance metrics as a function of the parameters.

Applying IPA to the Controller
The performance metric to minimize is the average cost per job, given by

J(θ) = w P(θ) + S(θ) = w c2[Vt / (1 – c1/θ)]2 + S(θ)

where

• θ is the average service time of a job, which is a function of the input voltage
V. That is, finding the optimal value of θ also yields the optimal value of V.

• w is a weighting constant.

• P is the average energy consumption of a job in Joules.

• S is the average system time for jobs, which measures quality of service.
This model uses an M/M/1 queuing system, so a closed-form expression
for S(θ) provides a way to compare the IPA results in the simulation with
theoretical results.

• c1 and c2 are device-dependent constants.

• Vt is the device’s minimum input voltage.

To find a value of θ for which dJ/dθ is 0, this model uses a gradient method
with constant step size � = 10-5. The kth iteration of the optimization, which
occurs upon the departure of the kth job, uses the estimate θk to produce

θ θ
θ

θ
θ

θθ
k k k

t k

k

dJ
d

wc c V

c
k

+ = − ⋅ = − ⋅
−

+1
1 2

2

1
3

2
∆ ∆

()
IPA estimation off

dS
d

k
θ θ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

To learn about the IPA estimation of dS/dθ, see the works listed in
“References” on page 13-18.

13-17

13 Demonstration Models

Structure of the Model
The model includes these components:

• Job Arrivals section — source of jobs that form the workload

• FIFO Queue, Single Server, and other blocks in the blue section — queuing
system for jobs

• DVS Optimizer subsystem — uses the queue length, θk value, service
time for the latest job, and total number of jobs to compute θk+1 and the
corresponding updated input voltage

Results and Displays
The model includes these visual ways to understand its performance:

• A dynamic plot showing how the DVS controller varies the voltage during
the simulation to reduce the average cost per job

• A Display block that shows the average service time for jobs

• A Display block that shows the corresponding input voltage

To experiment, try changing the value of the Avg Interarrival Time block
before running the simulation.

References

[1] Cassandras, Christos G., and Stéphane Lafortune, Introduction to Discrete
Event Systems, Boston, Kluwer Academic Publishers, 1999.

[2] Weiser M., B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced
CPU energy,” in Proceedings of the 1st Symposium on Operating Systems
Design and Implementation, pp. 13-23, 1994.

[3] Zhuang, S., and C. G. Cassandras, “Optimal Dynamic Voltage Scaling for
Wireless Sensor Networks with Real-Time Constraints,” in Proc. of SPIE
Conf. on Intelligent Systems in Design and Manufacturing VI, Oct. 2005.

13-18

Application Demos

Comparison of Routing Policies
This model runs three similar queuing systems in parallel under three
routing policies

Policy Description

Shortest Queue Each entity advances to the shortest queue

Probabilistic Each entity is randomly routed to a queue

Round robin Entities alternate between the two queues

The plot compares the average system time (end-to-end delay) to demonstrate
the optimality of the Shortest Queue policy when all service time distributions
are exponential. If this assumption is violated, a Shortest Queue policy is not
necessarily optimal.

F-14 Flight Control Over a Network
This model modifies the Simulink F-14 flight control demo model by
adding a network between the controller and the plant that models the
aircraft dynamics. Double-click the Shared Access Network block to
view the SimEvents blocks that model the network delays. The network
model is similar to the one in the Shared Access Communications Media
demonstration.

In the subsystem, double-click the Average Arrival Rate block (red) and use
the slider to change the background traffic level. You can examine the impact
of background traffic on the accuracy of the flight control loop. At low traffic
volume, the delays have little effect. However, at moderate volume, the
increased delay causes the control loop to oscillate when the control stick
is moved quickly. At higher volume, the delays are sufficient to render the
control loop ineffective.

Selective-Repeat Automatic Repeat Request
This model simulates an ideal selective-repeat ARQ system. Packets are
created, transmitted over a channel and affected by errors with a probability
determined by the Forward Channel. The receiver uses the return channel to
send an acknowledgement (ACK) or nonacknowledgement (NAK) message
back to the transmitter, depending on whether the packet was received

13-19

13 Demonstration Models

correctly. The transmitter retransmits only those packets that were not
received. The return channel is assumed to be error-free. Scopes display

• The packet IDs of the transmitted and received packets

• The presence of errors in the received packets, where a crc_check attribute
value of 2 indicates an error and a value of 1 indicates no error

• The reconstructed packet stream

• The theoretical and empirical times required for correct reception

Tank Filling Station
This model contains a tank whose fluid level decreases as fluid flows out of
the tank and increases when trucks fill the tank.

A controller aims to keep the tank’s fluid level between a lower level, L, and
an upper level, U. The controller responds to varying tank levels by changing
its state and the tank outflow rate, as shown below. The number M satisfies
L < M < U.

Tank Level
Threshold

State Change Outflow
Rate

U Set OVF = 1 (overflow) 20

L Set URF = 1 (underflow) 0

When crossing M from above, set OVF = 0 10M

When crossing M from below, set URF = 0 10

Trucks arrive to fill the tank and wait in a queue. Each truck has attributes
that specify the tank inflow rate and the truck’s service time. The tank inflow
rate equals

• The truck’s inflow attribute, while the truck is at the filling station.

• Zero, when no truck is present.

Plots display the short-term and long-term views of the system.

13-20

Application Demos

Astable Multivibrator Circuit
This model demonstrates how to model a hybrid system containing
event-driven and time-driven behavior. The system in this model is the
simple astable multivibrator circuit shown below. An astable multivibrator is
a two-stage switching circuit that generates a square wave with no external
triggering pulse. The circuit switches between its two stable states, remaining
in each state for a duration that depends on the discharging of the capacitive
circuit.

To focus on the integration of the time-driven and event-driven aspects, the
model makes these simplifying assumptions:

• Transistors change their on/off states instantaneously.

• The turn-on voltage for transistors is 0.6 V.

13-21

13 Demonstration Models

Circuit Operation

• When supply voltage, VCC, is applied, one transistor conducts more than
the other due to imbalance in resistance and capacitance values.

• Suppose that Q1 is on and Q2 is off. The voltage at the output of Q1 is
approximately Vcesat, which is zero.

• Immediately after Q1 turns on, C1 charges with the time constant R1C1
toward the supply voltage through R1. That is, Vbe of Q2 increases
asymptotically towards VCC.

• When Vbe of Q2 crosses the turn-on voltage, Q2 turns on and voltage at the
output of Q2 drops to approximately zero.

• Immediately after Q2 turns on, Vbe of Q1 falls due to capacitive coupling
between the collector of Q2 and the base of Q1. As a result, Q1 turns off.

• Immediately after Q2 turns on, C2 charges with the time constant R2C2
toward the supply voltage through R2. That is, Vbe of Q1 increases
asymptotically towards VCC.

• When Vbe of Q1 crosses the turn-on voltage, Q1 turns on again and the
process repeats.

Structure of the Demo
The model has a symmetric arrangement of blocks representing the two
branches in the circuit. Each branch in the block diagram has a feedback
connection to the other branch. Each branch includes these components:

• Enabled subsystem — models the variation in the base voltage when a
transistor switches its on/off state. In this subsystem, a Transfer Fcn block
models the charging and discharging of the RC circuit.

• Switching Logic subsystem — switches based on the potential barrier.
In this subsystem, the Saturation block enables the detection of level
crossings, while the Embedded MATLAB Function block contains the logic.

• Signal Latch block from SimEvents — allows the transistor Vce or the input
to the RC circuit to have two values at one time. The sequence of these
values is controlled by the block’s event-based operation, which enables
the feedback to occur without delay.

13-22

14

Functions – Alphabetical
List

simeventsconfig

Purpose Change settings of Simulink model

Syntax simeventsconfig
simeventsconfig(sys,'des')
simeventsconfig(sys,'hybrid')

Description simeventsconfig changes settings of the current system to values
appropriate for discrete-event simulation (DES) modeling.

simeventsconfig(sys,'des') changes settings of the specified system
to values appropriate for discrete-event simulation modeling. In
particular, this syntax changes the solver to a variable-step discrete
solver.

simeventsconfig(sys,'hybrid') changes settings of the specified
system to values appropriate for modeling systems that combine
time-driven and discrete-event-driven behavior. In particular, this
syntax changes the solver to a continuous solver, ode45.

This function assigns the following Simulink settings.

Parameter Setting for DES Systems Setting for Hybrid Systems

SolverName VariableStepDiscrete ode45

SolverType Variable-step Variable-step

MaxStep inf inf

SaveTime off off

SaveOutput off off

AlgebraicLoopMsg error error

SolverPrmCheckMsg none none

For information about the settings in the table, see “Model Parameters”
in the Simulink documentation. For information about discrete and
continuous solvers, see “Solvers”.

See Also simeventsstartup

14-2

simeventslib

Purpose Open SimEvents library

Syntax simeventslib

Description simeventslib opens the main SimEvents library.

14-3

simeventsstartup

Purpose Default Simulink model settings for SimEvents

Syntax simeventsstartup('des')
simeventsstartup('hybrid')

Description simeventsstartup('des') changes the default Simulink model
settings to values appropriate for discrete-event simulation (DES)
modeling.

simeventsstartup('hybrid') changes the default Simulink model
settings to values appropriate for modeling systems that combine
time-driven and discrete-event-driven behavior.

This function assigns the following Simulink settings.

Parameter Setting for DES Systems Setting for Hybrid Systems

SolverName VariableStepDiscrete ode45

SolverType Variable-step Variable-step

MaxStep inf inf

SaveTime off off

SaveOutput off off

AlgebraicLoopMsg error error

SolverPrmCheckMsg none none

For information about the settings in the table, see “Model Parameters”
in the Simulink documentation. For information about discrete and
continuous solvers, see “Solvers”.

Changes in default Simulink model settings apply to new models that
you create later in the MATLAB session, but not to previously created
models. To change the model settings of a previously created model, use
simeventsconfig.

14-4

simeventsstartup

Tip To install these model settings each time you start MATLAB, invoke
simeventsstartup from your startup.m file.

See Also simeventsconfig, startup

14-5

15

Blocks – Categorical List

Generators (p. 15-2) Generating entities, events, and
signals

SimEvents Sinks (p. 15-3) Viewing and exporting entities

Attributes (p. 15-4) Managing data attached to entities

Queues (p. 15-5) Storing entities in a queue

Servers (p. 15-6) Delaying entities by a service time

Routing (p. 15-7) Designing entity paths

Gates (p. 15-8) Regulating entity admission

SimEvents Ports and Subsystems
(p. 15-9)

Controlling timing using discrete
event subsystems

Timing (p. 15-10) Computing the time that entities
spend in a region

Probes (p. 15-11) Reporting information about the
simulation

Event Translation (p. 15-12) Converting one type of event to
another

15 Blocks – Categorical List

Generators

Entity Generators

Event-Based Entity Generator Generate entity upon signal-based
event or function call

Time-Based Entity Generator Generate entities using
intergeneration times from signal or
statistical distribution

Event Generators

Entity-Based Function-Call Event
Generator

Generate function call events
corresponding to entities

Signal-Based Function-Call Event
Generator

Generate function-call events in
response to signal-based events

Signal Generators

Event-Based Random Number Generate random numbers from
specified distribution, parameters,
and initial seed

15-2

SimEvents Sinks

SimEvents Sinks
Attribute Scope Plot data from attribute of arriving

entities

Discrete Event Signal to Workspace Write event-based signal to
workspace

Entity Sink Accept or block entities

Instantaneous Entity Counting
Scope

Plot entity count versus time

Instantaneous Event Counting
Scope

Plot event count versus time

Signal Scope Plot data from signal

X-Y Attribute Scope Plot data from two attributes of
arriving entities

X-Y Signal Scope Plot data from two signals

15-3

15 Blocks – Categorical List

Attributes
Get Attribute Output value of entity’s attribute

Set Attribute Assign data to entity

15-4

Queues

Queues
FIFO Queue Store entities in sequence for

undetermined length of time

LIFO Queue Store entities in stack for
undetermined length of time

Priority Queue Store entities in sorted sequence for
undetermined length of time

15-5

15 Blocks – Categorical List

Servers
Infinite Server Delay any number of entities for

period of time

N-Server Serve up to N entities for period of
time

Single Server Serve one entity for period of time

15-6

Routing

Routing
Input Switch Accept entities from selected entity

input port

Output Switch Select entity output port for
departure

Path Combiner Merge entity paths

Replicate Output copies of entity

15-7

15 Blocks – Categorical List

Gates
Enabled Gate Permit entity arrivals only when

control signal is positive

Release Gate Permit one pending entity to arrive
when event occurs

Signal Latch Write input signal value to memory
and read memory to output signal
upon events

15-8

SimEvents Ports and Subsystems

SimEvents Ports and Subsystems
Discrete Event Inport Input port for Discrete Event

Subsystem block

Discrete Event Outport Provide output port for Discrete
Event Subsystem block

Discrete Event Subsystem Subsystem to be executed upon
signal-based events

Subsystem Configuration Configuration for Discrete Event
Subsystem block

15-9

15 Blocks – Categorical List

Timing
Read Timer Report statistical data about named

timer associated with arriving
entities

Start Timer Associate named timer to each
arriving entity independently and
start timing

15-10

Probes

Probes
Entity Departure Counter Count departures and write result to

signal port and/or attribute

15-11

15 Blocks – Categorical List

Event Translation
Entity Departure Event to
Function-Call Event

Convert entity departure event into
one or two function calls

Signal-Based Event to Function-Call
Event

Convert signal-based events into
function calls

15-12

16

Blocks – Alphabetical List

Attribute Scope

Purpose Plot data from attribute of arriving entities

Library SimEvents Sinks

Description This block creates a plot using data from an attribute of arriving
entities. Use the Y attribute name parameter to specify which
attribute to plot along the vertical axis.

Use the Enable entity OUT port option to choose whether the entity
advances to a subsequent block or whether the block absorbs the
arriving entity.

The Plot type parameter on the Plotting tab determines whether
and how the block connects the points that it plots. For details, see
“Connections Among Points in Plots” on page 9-4.

Selecting Data for the Horizontal Axis

Use the X value from parameter to select the type of data for the
horizontal axis. The table below describes the choices.

Source of X Data Description of Plot

Event time Plot of the specified attribute versus simulation
time.

Index Plot of the successive values of the specified
attribute against a horizontal axis that
represents the index of the values. The first
entity’s attribute value has an index of 1, the
second entity’s attribute value has an index
of 2, and so on. For example, you might use
this option when multiple entities might arrive
simultaneously, to help determine the exact
sequence among the simultaneous attribute
values.

The figures below illustrate the different sources of data for the
horizontal axis. The plots look similar, except that the second plot has

16-2

Attribute Scope

uniform horizontal spacing rather than time-based spacing between
successive points.

16-3

Attribute Scope

Ports

Entity Input Ports

Label Description

IN Port for arriving entities, whose attributes contain the data to plot.

Entity Output Ports

Label Description

OUT Port for departing entities. This port appears only if you select Enable
entity OUT port.

Signal Output Ports

Label Description

#a Number of entities that have arrived at the block since the start of the
simulation.

16-4

Attribute Scope

Dialog
Box

Plotting Tab

Plot type
The presentation format for the data. See “Connections Among
Points in Plots” on page 9-4 for details.

Y attribute name
Name of the attribute to plot along the vertical axis.

X value from
Source of data for the plot’s horizontal axis. See “Selecting Data
for the Horizontal Axis” on page 16-2 for details.

Enable entity OUT port
Causes the block to have an entity output port labeled OUT,
through which the arriving entity departs. If you clear this box,
the block absorbs arriving entities.

16-5

Attribute Scope

Axes Tab

Initial X axis lower limit, Initial X axis upper limit
The interval shown on the X axis at the beginning of the
simulation. The interval might change from this initial setting
due to zooming, autoscaling, or the If X value is beyond limit
setting.

If X value is beyond limit
Determines how the plot changes if one or more X values are not
within the limits shown on the X axis. For details, see “Varying
Axis Limits Automatically” on page 9-5.

Initial Y axis lower limit, Initial Y axis upper limit
The interval shown on the Y axis at the beginning of the
simulation. The interval might change from this initial setting

16-6

Attribute Scope

due to zooming, autoscaling, or the If Y value is beyond limit
setting.

If Y value is beyond limit
Determines how the plot changes if one or more attribute values
are not within the limits shown on the Y axis. For details, see
“Varying Axis Limits Automatically” on page 9-5.

Show grid
Toggles the grid on and off.

Figure Tab

Open at start of simulation
Selecting this option causes the plot window to open when you
start the simulation. If you clear this box, you can open the plot

16-7

Attribute Scope

window while the simulation is running by double-clicking the
block icon.

Title
Text that appears as the title of the plot, above the axes.

Y label
Text that appears to the left of the vertical axis.

X label
Text that appears below the horizontal axis.

Position
A four-element vector of the form [left bottom width height]
specifying the position of the scope window. (0,0) is the lower left
corner of the display.

Show number of entities
Displays the number of plotted points using an annotation in the
plotting window.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

16-8

Attribute Scope

Number of entities arrived
Controls the presence and behavior of the signal output port
labeled #a.

Examples • “Example: Round-Robin Approach to Choosing Inputs” in the Getting
Started documentation

• “Example: Setting Attributes” on page 1-12

See Also X-Y Attribute Scope, Signal Scope, Chapter 9, “Plotting Data”,
“Accessing Attributes of Entities” on page 1-17

16-9

Discrete Event Inport

Purpose Input port for Discrete Event Subsystem block

Library SimEvents Ports and Subsystems

Description Discrete Event Inport blocks are the links from outside a discrete event
subsystem into the subsystem. By default, the names of Discrete Event
Inport blocks appear in the subsystem window as Din, Din1, Din2, etc.
A discrete event inport represents a real scalar signal of type double.

Copying and pasting Discrete Event Inport blocks is supported, but
duplicating them is not.

To create a subsystem using the Discrete Event Subsystem block, see
“Setting Up Signal-Based Discrete Event Subsystems” on page 8-11.

Dialog
Box

Execute subsystem upon signal-based events
If you select this option, Simulink executes the subsystem when a
qualifying signal-based event occurs in the signal corresponding
to this inport block. If you clear this option, the subsystem reads
the signal upon execution but does not respond to its events.

16-10

Discrete Event Inport

Type of signal-based event
Determines the type of event that is a qualifying event in the
signal corresponding to this inport block. This field appears only
if you select Execute subsystem upon signal-based events.

Type of change in signal value, Trigger type
The type of change in the control signal’s value, or the type of
trigger, that further restricts the event type specified in Type of
signal-based event. This field appears only if you set Type of
signal-based event to Change in signal or Trigger.

Specify event priority for executing subsystem
Select this option to control the sequencing of the subsystem’s
execution event in response to the signal corresponding to this
inport block, relative to other simultaneous events.

Subsystem execution event priority
The priority of the subsystem’s execution event, relative to other
simultaneous events. This field appears only if you select Specify
event priority for executing subsystem.

Examples See “Examples Using Discrete Event Subsystem Blocks” on page 8-16.

See Also Discrete Event Subsystem, Discrete Event Outport, Chapter 8,
“Controlling Timing Using Subsystems”

16-11

Discrete Event Outport

Purpose Provide output port for Discrete Event Subsystem block

Library SimEvents Ports and Subsystems

Description Discrete Event Outport blocks are the links from a discrete event
subsystem to a destination outside the subsystem. By default, the
names of Discrete Event Outport blocks appear in the subsystem
window as Dout, Dout1, Dout2, etc.

To create a subsystem using the Discrete Event Subsystem block, see
“Setting Up Signal-Based Discrete Event Subsystems” on page 8-11.

Examples See “Examples Using Discrete Event Subsystem Blocks” on page 8-16.

See Also Discrete Event Subsystem, Discrete Event Inport, Chapter 8,
“Controlling Timing Using Subsystems”

16-12

Discrete Event Signal to Workspace

Purpose Write event-based signal to workspace

Library SimEvents Sinks

Description This block writes its input to a structure or array in the base MATLAB
workspace when the simulation stops or pauses. This block is similar
to the To Workspace block in the Simulink Sinks library but is tailored
for use with event-based signals.

Output Format

The Save format parameter determines the output format. The
Structure With Time output format is most appropriate for
event-based signals because it indicates when the signal assumes each
value. Updates of event-based signals are typically aperiodic.

To convert a structure with time into a two-column matrix containing
times in the first column and signal values in the second column, use
an assignment like the one below. In place of simout, use the name
specified in this block’s Variable name parameter.

times_values = [simout.time, simout.signals.values];

For descriptions of all output formats, see the reference page for the To
Workspace block in the Simulink documentation.

Comparison with To Workspace Block

This block can detect zero-duration values of the input signal, as well
as signal updates that do not necessarily correspond to time steps
determined by time-based dynamics.

This block does not support data types other than double, and has
no Sample time parameter because event-based signals do not have
a true sample time.

The simulation times at which this block records data is typically
unrelated to the variable that a model creates if you select Time in the
Save to workspace section of the Data Import/Export tab of the
Configuration Parameters dialog box. By default, this option is selected

16-13

Discrete Event Signal to Workspace

and the variable is called tout. The simeventsconfig function clears
the time logging option to avoid confusion between the time steps listed
in tout and the update times of event-based signals in the simulation.

Ports This block has one signal input port for the signal to write to the
workspace.

The block has no entity ports, and no signal output port.

Dialog
Box

Variable name
The name of the structure or array that holds the data.

Limit data points to last
The maximum number of input samples to be saved.

Decimation
A positive integer, n, that specifies the decimation factor. The
block ignores the first n-1 out of every n input samples.

16-14

Discrete Event Signal to Workspace

Save format
Format in which to save simulation output to the workspace.
The recommended format for event-based signals is Structure
With Time.

Examples • “Example: Sending Queue Length to the Workspace” on page 3-23

• “Example: Observing Service Completions” on page 2-30

See Also To Workspace, “Sending Data to the MATLAB Workspace” on page 3-23

16-15

Discrete Event Subsystem

Purpose Subsystem to be executed upon signal-based events

Library SimEvents Ports and Subsystems

Description This block represents a subsystem of the system that contains it, and is
configured so that Simulink executes the subsystem upon signal-based
events that you specify in one or more Discrete Event Inport blocks
within the subsystem. Inputs from the upper level to blocks inside the
subsystem are attached to the Din, Din1, Din2, etc., ports on the
Discrete Event Subsystem block. Inputs must be real scalar signals of
type double. Outputs, if any, from blocks inside the subsystem to the
upper level are attached to the Dout, Dout1, Dout2, etc., ports on the
Discrete Event Subsystem block.

The number of input ports drawn on the Discrete Event Subsystem
block’s icon corresponds to the number of nonduplicate Discrete Event
Inport blocks inside the subsystem. Similarly, the number of output
ports drawn on the block corresponds to the number of Discrete Event
Outport blocks inside the subsystem.

Note This block is compatible only with inports and outports from the
SimEvents Ports and Subsystems library. To add inports or outports
to the Discrete Event Subsystem window, either copy new ports from
the SimEvents Ports and Subsystems library (not the Simulink Ports &
Subsystems library), or copy and paste the ports that are in the Discrete
Event Subsystem window by default.

To create a subsystem using the Discrete Event Subsystem block, see
“Setting Up Signal-Based Discrete Event Subsystems” on page 8-11. A
discussion of discrete event subsystems and examples using this block
are in Chapter 8, “Controlling Timing Using Subsystems”. To view the
contents of the subsystem, double-click the Discrete Event Subsystem
block; the Model Explorer tool does not show the contents.

“Block execution” in this documentation is shorthand for “block methods
execution.” Methods are functions that Simulink uses to solve a model.

16-16

Discrete Event Subsystem

Blocks are made up of multiple methods. For details, see “Block
Methods” in the Simulink documentation.

Ports

Signal Input Ports

Label Description

Din, Din1,
Din2, etc.

Signals that serve as inputs to the blocks in the subsystem. At least one
input signal must be present, but others are optional. Each port appears
only if the subsystem contains a Discrete Event Inport block of the same
name.

Signal Output Ports

Label Description

Dout,
Dout1,
Dout2,
etc.

Optional signals that serve as outputs from the blocks in the subsystem.
Each port appears only if the subsystem contains a Discrete Event Outport
block of the same name.

Examples See “Examples Using Discrete Event Subsystem Blocks” on page 8-16.

See Also Discrete Event Inport, Discrete Event Outport, Chapter 8, “Controlling
Timing Using Subsystems”

16-17

Enabled Gate

Purpose Permit entity arrivals only when control signal is positive

Library Gates

Description This block represents a gate that is open whenever the control signal
at the en input port is positive, and closed whenever the signal is zero
or negative. By definition, an open gate permits entity arrivals as long
as the entities would be able to advance immediately to the next block,
while a closed gate forbids entity arrivals. The en signal is a numerical
signal of type double. Because the signal can remain positive for a time
interval of arbitrary length, an enabled gate can remain open for a time
interval of arbitrary length. The length can be zero or a positive number.

Ports

Entity Input Ports

Label Description

IN Port for arriving entities.

Signal Input Ports

Label Description

en The gate is open whenever this signal is positive.

Entity Output Ports

Label Description

OUT Port for departing entities.

16-18

Enabled Gate

Signal Output Ports

Label Description Time of Update When Statistic
Is On

#d Number of entities that have
departed from this block since the
start of the simulation.

After entity departure

Dialog
Box

Enabled Gate Tab

Specify event priority for gate opening and closing
Select this option to control the processing sequence of
the gate-opening and gate-closing events, relative to other
simultaneous events.

Event priority
The priority of the gate-opening and gate-closing events, relative
to other simultaneous events. Gate opening and closing are
distinct events that share the same event priority. This field
appears only if you select Specify event priority for gate
opening and closing.

16-19

Enabled Gate

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Examples • “Example: Controlling Joint Availability of Two Servers” on page 7-4

• “Example: First Entity as a Special Case” on page 7-10

See Also Release Gate, Chapter 7, “Regulating Arrivals Using Gates”

16-20

Entity Departure Counter

Purpose Count departures and write result to signal port and/or attribute

Library Probes

Description This block computes the number of entities that have departed from
this block since the start of the simulation or since the last reset,
whichever occurred later. The block writes this number to a signal
output port and/or an attribute of each departing entity. The departing
entity is included in the count.

Resetting the Counter During the Simulation

To reset the entity count to zero based on a signal-based event, use
one of the procedures below.

Resetting the Counter upon Trigger Edges

1 Set Reset counter upon to Trigger from port tr.

2 Set Trigger type to Rising, Falling, or Either to indicate which
zero crossings cause the counter to reset.

3 If you want to specify an explicit priority for the reset event, then
select Specify event priority for counter reset and enter the
priority using the Event priority parameter. Though slightly
slower, this option lets you control the processing sequence of
simultaneous events.

4 Click OK or Apply. The block now has a signal input port labeled tr.

5 Connect a signal to the tr input port. During the simulation, the
block resets its counter whenever the signal at the tr port satisfies
your specified event criteria.

Resetting the Counter upon Value Changes

1 Set Reset counter upon to Change in signal from port vc.

16-21

Entity Departure Counter

2 Set Type of change in signal value to Rising, Falling, or Either
to indicate which value changes cause the counter to reset.

3 If you want to specify an explicit priority for the reset event, then
select Specify event priority for counter reset and enter the
priority using the Event priority parameter. Though slightly
slower, this option lets you control the processing sequence of
simultaneous events.

4 Click OK or Apply. The block now has a signal input port labeled vc.

5 Connect a signal to the vc input port. During the simulation, the
block resets its counter whenever the signal at the vc port satisfies
your specified event criteria.

Ports

Entity Input Ports

Label Description

IN Port for arriving entities.

Signal Input Ports

Label Description

tr When the signal at this port satisfies the specified trigger criteria, the block
resets its internal counter and the #d output signal to zero. This port
appears only if you set Reset counter upon to Trigger from port tr.

vc When the signal at this port satisfies the specified value-change criteria,
the block resets its internal counter and the #d output signal to zero. This
port appears only if you set Reset counter upon to Change in signal
from port vc.

16-22

Entity Departure Counter

Entity Output Ports

Label Description

OUT Port for departing entities.

Signal Output Ports

Label Description Time of Update When Statistic
Is On

#d Number of entities that have
departed from this block since the
start of the simulation or since the
last reset.

After entity departure

Dialog
Box

Write count to signal port #d
Controls the presence and behavior of the signal output port
labeled #d. This parameter determines whether the block outputs
the entity count through a signal output port throughout the

16-23

Entity Departure Counter

simulation, only when you stop or pause the simulation, or not at
all.

Write count to attribute
If you set this to On, the block assigns the entity count to the
attribute specified in the Attribute name parameter. The entity
must already possess an attribute by that name.

Attribute name
The name of the attribute the block uses to record the entity count.
This field appears only if you set Write count to attribute to On.

Reset counter upon
Determines whether the block resets its internal counter to zero
based on trigger edges, based on changes in signal values, or
not at all.

Trigger type
Determines whether rising, falling, or either type of trigger edge
causes the counter to reset. This field appears only if you set
Reset counter upon to Trigger from port tr.

Type of change in signal value
Determines whether rising, falling, or either type of value change
causes the counter to reset. This field appears only if you set
Reset counter upon to Change in signal from port vc.

Specify event priority for counter reset
Select this option to control the sequencing of the counter’s reset
event, relative to other simultaneous events. This field appears
only if you set Reset counter upon to Trigger from port tr or
Change in signal from port vc.

Event priority
The priority of the counter’s reset event, relative to other
simultaneous events. This field appears only if you set Reset
counter upon to either Trigger from port tr or Change in
signal from port vc, and then select Specify event priority
for counter reset.

16-24

Entity Departure Counter

Examples • “Example: Setting Attributes” on page 1-12

• “Example: Resetting a Counter After a Transient Period” on page
1-20

• “Stopping Based on Entity Count” on page 10-21

See Also Instantaneous Entity Counting Scope, “Counting Entities” on page 1-18

16-25

Entity Departure Event to Function-Call Event

Purpose Convert entity departure event into one or two function calls

Library Event Translation

Description This block converts an entity departure event into one or two function
calls that you can use to invoke function-call subsystems, Stateflow
blocks, or other blocks that accept function-call inputs. The block can
suppress its output under certain conditions.

Criteria for Generating Function Calls

The primary criterion is the departure, or imminent departure, of an
entity from the block. You can choose whether the block issues the
function call before or after the departure.

To issue up to two function calls per event, select Generate optional
function call f2 after function call f1. If you configure the block
to issue the f1 function call before the entity departure, then you can
independently choose whether the block issues the f2 function call
before or after that departure.

To make the f1 or f2 output function call contingent upon a secondary
criterion, select Suppress function call f1 if enable signal e1 is not
positive or Suppress function call f2 if enable signal e2 is not
positive. The block acquires an additional signal input port, labeled
e1 or e2, to which you connect a control signal. If the control signal is
zero or negative when the block is about to issue the function call, then
the block suppresses the function call. The e1 and e2 ports operate
independently of each other as secondary criteria for their respective
function-call output ports.

16-26

Entity Departure Event to Function-Call Event

Ports

Entity Input Ports

Label Description

IN Port for arriving entities.

Signal Input Ports

Label Description

e1 When this signal is 0 or negative, the block does not issue a function call
at the f1 output port. This input port appears only if you select Suppress
function call f1 if enable signal e1 is not positive.

e2 When this signal is 0 or negative, the block does not issue a function call
at the f2 output port. This input port appears only if you select Suppress
function call f2 if enable signal e2 is not positive.

Entity Output Ports

Label Description

OUT Port for departing entities.

16-27

Entity Departure Event to Function-Call Event

Signal Output Ports

Label Description Time of Update When Port
Is Present

Order of
Update

f1 Function-call signal, possibly
contingent on e1 input signal.

Before or after entity
departure, depending on
Timing of function call f1
parameter

1

f2 Function-call signal, possibly
contingent on e2 input signal.

Before entity departure if
both Timing of function
call... parameters are set to
Before entity departure;
otherwise, after entity
departure

2

#d Number of entities that have
departed from this block since
the start of the simulation.

After entity departure 4

#f1 Number of function calls the
block has generated at the f1
port during the simulation.

After entity departure 3

#f2 Number of function calls the
block has generated at the f2
port during the simulation.

After entity departure 3

Output signals having the same number in the Order of Update column
above are updated in an arbitrary sequence relative to each other; you
should not rely on a specific sequence for your simulation results.

16-28

Entity Departure Event to Function-Call Event

Dialog
Box

Function Call Tab

Timing of function call f1
Determines whether the f1 function call occurs before or after the
entity departure event.

Suppress function call f1 if enable signal e1 is not positive
Selecting this option causes f1 function calls to be contingent upon
a positive value at the e1 signal input port.

Generate optional function call f2 after function call f1
Selecting this option causes the block to issue a function call at
the optional f2 output port when appropriate criteria are satisfied.

Timing of function call f2
Determines whether the f2 function call occurs before or after the
entity departure event. This field appears only if you set Timing
of function call f1 to Before entity departure and select
Generate optional function call f2 after function call f1.

Suppress function call f2 if enable signal e2 is not positive
Selecting this option causes f2 function calls to be contingent upon
a positive value at the e2 signal input port. This field appears

16-29

Entity Departure Event to Function-Call Event

only if you select Generate optional function call f2 after
function call f1.

Statistics Tab

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Number of f1 function calls
Controls the presence and behavior of the signal output port
labeled #f1.

Number of f2 function calls
Controls the presence and behavior of the signal output port
labeled #f2. This field is active only if you select Generate
optional function call f2 after function call f1 on the
Function Call tab of this dialog box.

Examples • “Sample Use Cases” on page 1-8 — examples related to entity
generation based on events

• “Example: Opening a Gate Upon Entity Departures” on page 7-7
— an example involving a gate

16-30

Entity Departure Event to Function-Call Event

• “Example: Using Entity-Based Timing for Choosing a Port” on page
8-29 — a computation inside a discrete event subsystem

See Also Signal-Based Event to Function-Call Event, “Manipulating Events”
on page 2-37

16-31

Entity Sink

Purpose Accept or block entities

Library SimEvents Sinks

Description This block provides a way to terminate an entity path:

• If you select Input port available for entity arrivals, the block
always accepts entity arrivals.

• Otherwise, the block never accepts entity arrivals. The simulation
issues an error message if an entity attempts to arrive at the block.

Ports

Entity Input Ports

Label Description

IN Port for entities that arrive or attempt to arrive.

Signal Output Ports

Label Description Time of Update When Statistic
Is On

#a Number of entities that the block
has accepted. This port appears only
if you select Input port available
for entity arrivals and then set
Number of entities arrived to
either On or Upon stop or pause.

After entity arrival

16-32

Entity Sink

Dialog
Box

Input port available for entity arrivals
Determines whether the block accepts or blocks entities that
attempt to arrive.

Number of entities arrived
Controls the presence and behavior of the signal output port
labeled #a. This field appears only if you select Input port
available for entity arrivals.

Examples • “Modeling the Channels” in the Getting Started documentation

• “Example: Using an Attribute to Select an Output Port” in the
Getting Started documentation

See Also Time-Based Entity Generator, Event-Based Entity Generator

16-33

Entity-Based Function-Call Event Generator

Purpose Generate function call events corresponding to entities

Library Generators / Event Generators

Description This block generates a function call corresponding to each entity that
arrives at the block. You can choose whether the block issues the
function call before or after the departure. You can use the function call
to invoke function-call subsystems, Stateflow blocks, or other blocks
that accept function-call inputs.

This block is similar to the Entity Departure Event to Function-Call
Event block, which offers more flexibility.

Ports

Entity Input Ports

Label Description

IN Port for arriving entities.

Entity Output Ports

Label Description

OUT Port for departing entities.

16-34

Entity-Based Function-Call Event Generator

Signal Output Ports

Label Description Time of Update When Port
Is Present

Order of
Update

f1 Function-call signal. Before or after entity
departure, depending on
Generate function call
parameter

1

#d Number of entities that have
departed from this block since
the start of the simulation.

After entity departure 3

#f1 Number of function calls the
block has generated since the
start of the simulation.

After entity departure 2

Dialog
Box

Function Call Tab

Generate function call
Determines whether the function call occurs before or after the
entity departs from this block.

16-35

Entity-Based Function-Call Event Generator

Statistics Tab

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Number of f1 function calls
Controls the presence and behavior of the signal output port
labeled #f1.

Examples See “Example: Performing a Computation on Selected Entity Paths”
on page 8-31.

See Also Entity Departure Event to Function-Call Event, Signal-Based
Function-Call Event Generator, “Generating Function-Call Events”
on page 2-34

16-36

Event-Based Entity Generator

Purpose Generate entity upon signal-based event or function call

Library Generators / Entity Generators

Description This block is designed to generate entities when events of a specified
type occur.

When to Generate Entities Generate entities upon Value

Each time Simulink recomputes
and outputs the value of a signal

Sample time hit from port ts

Each time an input signal has a
trigger edge

Trigger from port tr

Each time an input signal
changes its value

Change in signal from port
vc

Each time an input signal issues
a function call

Function call from port fcn

For details about these options, see “Generating Entities When Events
Occur” on page 1-2.

Note An exceptional case is when the block temporarily suspends its
normal entity-generation behavior. See the description of the Delay
first pending entity option in “Responding to Blockage at Entity
Output Port” on page 16-37.

Responding to Blockage at Entity Output Port

Using the Allow OUT port blocking and optional Response during
blockage period parameters, you can choose how this block responds
when the subsequent entity input port is not available to accept the
newly generated entity. The possible responses are in the table below.

16-37

Event-Based Entity Generator

Response to Blockage Parameter Values

Error message Clear the Allow OUT port blocking
check box.

The block discards all
entities generated while
the OUT port is blocked.
Such entities do not depart
from the block.

Select Allow OUT port blocking
and set Response during blockage
period to Discard generated
entities

The block holds one
generated entity and
temporarily suspends the
generation of additional
entities. When the
subsequent entity input
port becomes available,
this block outputs the held
entity and resumes normal
operation.

Select Allow OUT port blocking
and set Response during blockage
period to Delay first pending
entity

Ports

Signal Input Ports

Label Description

ts Signal whose updates indicate when to generate entities. This port appears
only if you set Generate entities upon to Sample time hit from port
ts.

tr Trigger signal whose edges indicate when to generate entities. This port
appears only if you set Generate entities upon to Trigger from port tr.

16-38

Event-Based Entity Generator

Label Description

vc Signal whose numerical changes in value indicate when to generate entities.
This port appears only if you set Generate entities upon to Change in
signal from port vc.

fcn Function-call signal that indicates when to generate entities. This port
appears only if you set Generate entities upon to Function call from
port fcn.

Entity Output Ports

Label Description

OUT Port through which generated entities depart.

Signal Output Ports

Label Description Time of Update When
Statistic Is On

Order of
Update

#d Number of entities that have
departed from this block since
the start of the simulation.

After entity departure 3

pe A value of 1 indicates when
the block tries and fails to
output an entity.

After entity generation if
OUT port is blocked, and
after entity departure in all
cases

2

w Average intergeneration time,
in seconds, for all pairs of
successive entities that have
departed from this block. The
signal value is 0 before the
second entity departure.

After entity departure 1

16-39

Event-Based Entity Generator

Dialog
Box

Entity type
The standard type includes attributes called Priority and Count,
while the blank type includes no attributes.

Allow OUT port blocking
If you do not select this option, the simulation halts with an error
message if the subsequent entity input port is not available to
accept an entity when this block generates it.

Response during blockage period
Determines how the block responds if a generated entity
cannot depart immediately because the entity input port of the
subsequent block is unavailable; see “Responding to Blockage at
the Entity Output Port” on page 16-173. This field appears only
if you select Allow OUT port blocking.

Entity Generation Tab

Generate entities upon
The type of event that indicates when the block should generate
an entity.

16-40

Event-Based Entity Generator

Trigger type
Determines whether rising, falling, or either type of trigger edge
causes an entity generation. This field appears only if you set
Generate entities upon to Trigger from port tr.

Type of value change
Determines whether rising, falling, or either type of value change
causes an entity generation. This field appears only if you set
Generate entities upon to Change in signal from port vc.

Specify event priority for entity generation
Select this option to control the sequencing of the entity-generation
event, relative to other simultaneous events.

Generation event priority
The priority of the entity-generation event, relative to other
simultaneous events. This field appears only if you select Specify
event priority for entity generation.

Generate entity at simulation start
If you select this option, the block generates the first entity when
the simulation begins. Otherwise, the block generates the first
entity upon the first update of the ts signal at a nonzero value of
time. This field appears only if you set Generate entities to
Sample time hit from port ts.

Allow entity generation at simulation start
If you select this option, the block responds to function calls at the
starting time of the simulation. Otherwise, the block responds
only to function calls at subsequent times. This field appears
only if you set Generate entities upon to Function call from
port fcn.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

16-41

Event-Based Entity Generator

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Status of pending entity departure
Controls the presence and behavior of the signal output port
labeled pe.

Average intergeneration time
Controls the presence and behavior of the signal output port
labeled w.

Examples • “Example: Plotting Event Counts to Find Roundoff Error” on page
9-12

• “Example: Race Conditions at a Switch” on page 2-23

• “Sample Use Cases” on page 1-3 under “Detecting Sample Time Hits”
on page 1-2

• “Sample Use Cases” on page 1-4 under “Detecting Changes in Signal
Values” on page 1-4

• “Sample Use Cases” on page 1-6 under “Detecting Edges in Trigger
Signals” on page 1-5

• “Sample Use Cases” on page 1-8 under “Detecting Function Calls”
on page 1-7

See Also Time-Based Entity Generator, Entity Sink, “Generating Entities When
Events Occur” on page 1-2

16-42

Event-Based Random Number

Purpose Generate random numbers from specified distribution, parameters,
and initial seed

Library Generators / Signal Generators

Description This block generates random numbers in an event-based manner,
inferring from a subsequent block when to generate a new random
number. For example, when connected to the t input port of a Single
Server block, the Event-Based Random Number block generates a new
random number each time an entity arrives at the server.

You specify the distribution from which the block draws random
numbers. The seed of the random number generator is reset to the
value of the Initial seed parameter each time a simulation starts,
which makes the random behavior repeatable.

Connecting to Other Blocks

This block has a restricted set of valid connections to other blocks. This
is because the Event-Based Random Number block is designed to infer
from a subsequent block when to generate a new random number.

Connect the Event-Based Random Number block to

• Exactly one notifying port

• Zero or more monitoring ports

• No reactive ports or other ports

Notifying ports, listed in the table below, notify the preceding block
when a certain event has occurred. When the preceding block is the
Event-Based Random Number block, it responds to the notification by
generating a new random number. The Event-Based Random Number
block must be connected to exactly one notifying port.

16-43

Event-Based Random Number

Notifying Ports

Signal
Input Port

Block Generate New Random
Number Upon

A1, A2, A3,
A4

Set Attribute Entity arrival

in Signal Latch Write event

Entity Departure Event
to Function-Call Event

Entity arrivale1, e2

Signal-Based Event to
Function-Call Event

Relevant signal-based
event, depending on
configuration of block

Infinite Server Entity arrival

N-Server Entity arrival

t

Single Server Entity arrival

t Time-Based Entity
Generator

Simulation start and
subsequence entity
departures

x X-Y Signal Scope Sample time hit at in signal
input port

Monitoring ports, listed in the next table, help you observe signal
values. You can optionally use a branch line to connect the Event-Based
Random Number block to one or more monitoring ports. These
connections do not cause the Event-Based Random Number block to
generate a new random number but merely enable you to observe the
signal.

16-44

Event-Based Random Number

Monitoring Ports

Signal
Input Port

Block

Unlabeled Discrete Event Signal to Workspace

Signal Scopein

X-Y Signal Scope

ts, tr, vc Instantaneous Event Counting Scope

Reactive ports, listed in the next table, listen for updates or changes
in the input signal and cause an appropriate reaction in the block
possessing the port. For example, the p port on a switch listens for
changes in the input signal; the block reacts by selecting a new switch
port. You cannot connect the Event-Based Random Number block to
a reactive port. To create a random signal that can be an input to a
reactive port, see the techniques described in “Generating Random
Signals Based on Arbitrary Events” on page 3-5 and “Generating
Random Time-Based Signals” on page 3-8.

16-45

Event-Based Random Number

Reactive Ports

Signal
Input Port

Block

Input Switch

Output Switch

p

Path Combiner

Entity Departure Counter

Event-Based Entity Generator

Release Gate

Signal-Based Event to Function-Call Event

ts, tr, vc

Signal-Based Function-Call Event Generator

wts, wtr,
wvc, rts,
rtr, rvc

Signal Latch

Note Connections from the Event-Based Random Number block to
ports other than notifying ports and monitoring ports are not supported.

Distribution Types

The Distribution parameter names the type of distribution the block
uses to generate random numbers. When you set the Distribution
parameter, the block changes its dialog box to show additional
parameters that determine the probability density function (or
probability mass function, for a discrete distribution). The available
distributions and the additional parameters for each are described in
the sections that follow.

16-46

Event-Based Random Number

Distribution Additional Parameters

Exponential Mean

Uniform Minimum, Maximum

Bernoulli Probability of 1

Binomial Probability of success in a single trial,
Number of trials

Triangular Minimum, Maximum, Mode

Gamma Threshold, Scale, Shape

Gaussian
(normal)

Mean, Standard deviation

Geometric Probability of success in a single trial

Poisson Mean

Lognormal Threshold, Scale, Shape

Log-logistic Threshold, Scale

Beta Minimum, Maximum, Shape parameter a,
Shape parameter b

Discrete
uniform

Minimum, Maximum, Number of values

Weibull Threshold, Scale, Shape

Arbitrary
continuous

Value vector, Cumulative probability
function vector

Arbitrary
discrete

Value vector, Probability vector

For information about the definitions and properties of each distribution,
see the references listed in “References” on page 16-55 below.

Range of Output Values

Different distributions have different output ranges. Make sure
the distribution and parameters you choose are suitable for your

16-47

Event-Based Random Number

application. For example, when generating random service times, do not
use a Gaussian distribution because it can produce negative numbers.

Ports This block has one signal output port for the random numbers.

The block has no entity ports, and no signal input port.

Dialog
Box

Distribution
The distribution from which the block generates random numbers.

Mean
The mean value of an exponential, Gaussian, or Poisson
distribution.

Minimum, Maximum
The minimum and maximum values of a uniform, triangular,
beta, or discrete uniform distribution.

Probability for output to be 0
The probability of a zero in a Bernoulli distribution.

16-48

Event-Based Random Number

Probability of success in a single trial
The probability of a successful outcome in each trial used to
describe a binomial or geometric distribution.

Number of trials
The number of trials used to describe a binomial distribution.

Mode
The statistical mode of a triangular distribution. The triangular
distribution also uses the Minimum and Maximum parameters
to define its density function.

Threshold, Scale, Shape
Parameters that define the density function of a gamma,
lognormal, log-logistic, or Weibull distribution. The log-logistic
distribution does not use a Shape parameter, however.

Standard deviation
The standard deviation of a Gaussian distribution, which also
uses the Mean parameter to define its density function.

Shape parameter a, Shape parameter b
The first and second shape parameters, respectively, of a beta
distribution. The beta distribution also uses the Minimum and
Maximum parameters to define its density function.

Number of values
The number of possible outputs of a discrete uniform distribution,
including the values of the Minimum and Maximum parameters.
Number of values must exceed 1.

Value vector
A vector of values in ascending order, representing the possible
random values in an arbitrary continuous or arbitrary discrete
distribution.

Cumulative probability function vector
A vector of values in ascending order representing the cumulative
probability function for an arbitrary continuous distribution. The
first and last values of the vector must be 0 and 1, respectively.

16-49

Event-Based Random Number

This parameter and the Value vector parameter must have the
same vector length.

Probability vector
A vector of values representing the probability of each value in
the Value vector function for an arbitrary discrete distribution.
This vector must contain nonnegative values that sum to 1. This
parameter and the Value vector parameter must have the same
vector length.

Initial seed
A nonnegative integer that initializes the random number
generator.

Examples See “Examples of Random Event-Based Signals” on page 3-6.

Algorithm Below are the expressions for f, the probability density functions for the
continuous distributions and probability mass functions for the discrete
distributions that the block supports.

Exponential Distribution

f x
x

x
()

exp
=

−⎛

⎝
⎜

⎞

⎠
⎟ ≥

⎧

⎨
⎪

⎩
⎪

1
0

0

µ µ
for

otherwise

where µ is the Mean parameter, a positive number.

A similar function in the Statistics Toolbox is exprnd.

Uniform Distribution

f x U L
L x U

() = −
≤ ≤⎧

⎨
⎪

⎩⎪

1

0

for

otherwise

where L is the Minimum parameter and U is the Maximum parameter.

16-50

Event-Based Random Number

Similar functions are rand in MATLAB and unifrnd in the Statistics
Toolbox.

Bernoulli Distribution

f x p p xx x
() () ,= − =⎧

⎨
⎪

⎩⎪

−1 0 1
0

1 for
otherwise

where p is the Probability of 1 parameter. The value p must be
between 0 and 1, inclusive. This is a discrete distribution.

This distribution is a special case of the binomial distribution in which
the number of trials is 1.

Binomial Distribution

f x
n

x n x
p q x nx n x

()
!

!()!
, , ,...,()

= −
=⎧

⎨
⎪

⎩⎪

− for

otherwise

0 1 2

0

where p is the Probability of success in a single trial parameter, q =
1–p, and n is the Number of trials parameter. The value p must be
between 0 and 1, inclusive, while n must be positive. This is a discrete
distribution.

A similar function in the Statistics Toolbox is binornd.

Triangular Distribution

f x

x L
U L m L

L x m

U x
U L U m

m x U()

()
()()

()
()()

=

−
− −

≤ ≤

−
− −

< ≤

2

2

0

for

for

othherwise

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

16-51

Event-Based Random Number

where L is the Minimum parameter, U is the Maximum parameter,
and m is the Mode parameter. These parameters must satisfy L < m
< U.

Gamma Distribution

f x

x
b

x
b

b
x

a

()
exp

()
=

−⎛
⎝⎜

⎞
⎠⎟

− −⎛
⎝⎜

⎞
⎠⎟ ≥

⎧

⎨
⎪
⎪

−θ θ

γ
θ

1

0
Γ

for

otherwise⎩⎩
⎪
⎪

where θ is the Threshold parameter, b is the Scale parameter, and a
is the Shape parameter. The Scale and Shape parameters must be
positive. Also, � is the gamma function (gamma in MATLAB).

A similar function in the Statistics Toolbox is gamrnd.

Gaussian (Normal) Distribution

f x
x

()
exp () /()

=
− −()µ σ

σ π

2 22

2

where µ is the Mean parameter and σ is the Standard deviation
parameter. The standard deviation parameter must be nonnegative.

Similar functions are randn in MATLAB and normrnd in the Statistics
Toolbox.

Geometric Distribution

If the Probability of success in a single trial parameter is strictly
between 0 and 1, then the probability mass function is defined by

f x pq xx
() , , ,...= =⎧

⎨
⎪

⎩⎪
for
otherwise

0 1 2
0

where p is the Probability of success in a single trial parameter
and q = 1–p.

16-52

Event-Based Random Number

In the special case where the Probability of success in a single trial
parameter is 1, then

f x
x

() =
=⎧

⎨
⎩

1 0for
0 otherwise

This is a discrete distribution.

A similar function in the Statistics Toolbox is geornd.

Poisson Distribution

f x
e

x
x

x

() !
, , ,...= =

⎧
⎨
⎪

⎩⎪

−λλ
for

otherwise

0 1 2

0

where λ is the Mean parameter, a positive number. This is a discrete
distribution.

A similar function in the Statistics Toolbox is poissrnd.

Lognormal Distribution

f x

x

x
x()

exp
ln

()
=

− −() −()⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−
≥

⎧ θ µ

σ

θ σ π
θ

2

22

2
0

for

otherwise

⎨⎨

⎪
⎪

⎩

⎪
⎪

where θ is the Threshold parameter, exp(µ) is the Scale parameter,
and σ is the Shape parameter. The Shape parameter must be positive.

A similar function in the Statistics Toolbox is lognrnd.

Log-Logistic Distribution

The log-logistic distribution is derived from the logistic distribution,
as follows:

16-53

Event-Based Random Number

X = Random variable with logistic distribution

Y = eX = Random variable with log-logistic distribution

The probability density function for the logistic distribution is

f x
b

e

e

x b

x b
logistic ()

() /

() /
= ⋅

+()
−

−

1

1
2

θ

θ

where θ is the Threshold parameter and b is the Scale parameter. The
Scale parameter must be positive.

Beta Distribution

f x
x L U x

B a b U L
L x U

a b

a b()
() ()

(,)()=
− −

−
≤ ≤

⎧

⎨

− −

+ +

1 1

1

0

for

otherwise

⎪⎪

⎩
⎪

where L is the Minimum parameter, M is the Maximum parameter, a
is the Shape parameter a parameter, b is the Shape parameter b
parameter, and B(a,b) is the beta function defined by

B a b t t dta b(,) ()= −− −∫ 1 1
0

1
1

The two shape parameters must be positive.

A similar function in the Statistics Toolbox is betarnd.

Discrete Uniform Distribution

f x
K x L k

U L
K

k K
()

/
()

, , ,...,
=

= + −
−

= −⎧
⎨
⎪

⎩⎪

1
1

0 1 2 1

0

for ,

otherwise

where L is the Minimum parameter, U is the Maximum parameter,
and K is the Number of values parameter. This is a discrete

16-54

Event-Based Random Number

distribution. If (U-L)/(K-1) and L are both integers, then all outputs
from this distribution are integers.

A similar function in the Statistics Toolbox is unidrnd.

Weibull Distribution

f x
x x

x
()

exp
()

=
−⎛

⎝⎜
⎞
⎠⎟

− −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≥
−γ

α
θ

α
θ

α
θ

γ γ1

0

for

otherwwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

where θ is the Threshold parameter, α is the Scale parameter, and
γ is the Shape parameter. The Scale and Shape parameters must
be positive.

A similar function in the Statistics Toolbox is wblrnd.

See Also Signal Latch, “Generating Random Signals” on page 3-4

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions,
Wiley-Interscience, 2000.

[2] Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous
Univariate Distributions, Volume 1, Wiley-Interscience, 1993.

[3] Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous
Univariate Distributions, Volume 2, Wiley-Interscience, 1994.

[4] Johnson, N. L., S. Kotz, and A. W. Kemp, Univariate Discrete
Distributions, Wiley-Interscience, 1993.

16-55

FIFO Queue

Purpose Store entities in sequence for undetermined length of time

Library Queues

Description This block stores up to N entities simultaneously, where N is the
Capacity parameter value. The block attempts to output an entity
through the OUT port but retains the entity if the OUT port is blocked.
If the block is storing multiple entities, then entities depart in a first-in,
first-out (FIFO) fashion. The length of time that an entity stays in this
block cannot be determined in advance.

The IN port is unavailable whenever this block stores exactly N entities.
In this case, the queue is said to be full.

Ports

Entity Input Ports

Label Description

IN Port for arriving entities, which will be stored.

Entity Output Ports

Label Description

OUT Port for departing entities.

16-56

FIFO Queue

Signal Output Ports

Label Description Time of Update When
Statistic Is On

Order of
Update

#d Number of entities that have
departed from this block since
the start of the simulation.

After entity departure 4

#n Number of entities currently
in the queue.

After entity arrival at a
nonempty queue and after
entity departure

3

pe A value of 1 indicates when
the block tries and fails to
output an entity; that is, the
queue is nonempty. A value of
0 indicates when the queue is
empty.

After entity arrival and after
entity departure

2

w Sample mean of the waiting
times in this block for all
entities that have departed.

After entity departure 1

len Average number of entities
in the queue over time, that
is, the time average of the #n
signal.

After entity arrival at a
nonempty queue and after
entity departure

1

Output signals having the same number in the Order of Update column
above are updated in an arbitrary sequence relative to each other; you
should not rely on a specific sequence for your simulation results.

16-57

FIFO Queue

Dialog
Box

FIFO Queue Tab

Capacity
Determines how many entities the block can store at a time.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

16-58

FIFO Queue

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Number of entities in queue
Controls the presence and behavior of the signal output port
labeled #n.

Status of pending entity departure
Controls the presence of the signal output port labeled pe.

Average wait
Controls the presence and behavior of the signal output port
labeled w.

Average queue length
Controls the presence and behavior of the signal output port
labeled len.

Examples • “Building a Simple Discrete-Event Model” in the Getting Started
documentation

16-59

FIFO Queue

• “Example: Selecting the First Available Server” in the Getting
Started documentation

• “Example: Round-Robin Approach to Choosing Inputs” in the Getting
Started documentation

• “Constructs Involving Queues and Servers” in the Getting Started
documentation

• “Example of a Logical Queue” in the Getting Started documentation

• “Example: Waiting Time in LIFO Queue” on page 4-2

See Also LIFO Queue, Priority Queue, “Basic Queues and Servers” in the Getting
Started documentation

16-60

Get Attribute

Purpose Output value of entity’s attribute

Library Attributes

Description This block outputs signals from up to four attributes. For each entity,
the block updates the signal at the A1, A2, A3, and/or A4 signal output
port using the value of the attribute named in the corresponding tab of
the dialog box. The block also outputs the entity unchanged.

To query fewer than the maximum number of attributes, you can
deactivate unused tabs by setting Send attribute value to signal
port A4, for example, to Off.

To specify the names of attributes you want to query, use the Attribute
name parameter in the dialog box.

Missing Attributes

If the block is configured to retrieve the value of an attribute that an
arriving entity does not possess, then the block can react in one of
these ways:

• Issue an error message and halt the simulation.

• Output a default value that you specify. The simulation proceeds.

• Output a default value that you specify and also issue a warning in
the MATLAB Command Window. The simulation proceeds.

You determine the reaction using the Action for missing attribute
parameter on each attribute tab of the dialog. The error and warning
options can be useful for debugging a simulation (for example, to locate
a mistyped attribute name in a dialog box).

16-61

Get Attribute

Ports

Entity Input Ports

Label Description

IN Port for arriving entities.

Entity Output Ports

Label Description

OUT Port for departing entities.

Signal Output Ports

Label Description Time of Update When
Statistic Is On

Order of
Update

#d Number of entities that have
departed from this block since
the start of the simulation.

After entity departure 2

Ax, where x
= 1, 2, 3, 4

Value of the attribute specified
on the Ax tab of the dialog.
This port appears only if you
set Send attribute value to
signal port Ax on the Ax tab
to On.

After entity departure 1

Output signals having the same number in the Order of Update column
above are updated in an arbitrary sequence relative to each other; you
should not rely on a specific sequence for your simulation results.

Dialog
Box

A1, A2, A3, A4 Tabs

The A1, A2, A3, and A4 tabs have similar parameter choices. By
assigning different values to the parameters, you can configure this

16-62

Get Attribute

block to retrieve the values of up to four different attributes for each
entity that the block processes.

Send attribute value to signal port Ax, where x = 1, 2, 3, 4
Indicates whether the block creates an output signal with the
value of an attribute. Choosing Off indicates that you are not
using this tab of the dialog and makes the parameters below
inactive or invisible.

Attribute name
The name of the attribute to query.

Action for missing attribute
The response of the block when the entity does not possess the
attribute named above.

Default value
The value for the corresponding Simulink output signal if the
entity does not possess the attribute named above. This field
appears only if you set Action for missing attribute to Output
default value or Output default value and warn.

16-63

Get Attribute

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Examples • “Adding Event-Based Behavior” in the Getting Started documentation

• “Example Manipulating Data” on page 1-15

See Also Set Attribute, “Accessing Attributes of Entities” on page 1-17

16-64

Infinite Server

Purpose Delay any number of entities for period of time

Library Servers

Description This block serves any number of entities for a period of time, called
the service time, and then attempts to output them through the OUT
port. If the OUT port is blocked, then the block holds the entities until
the port becomes unblocked. An infinite server is like an infinite set of
single servers connected in parallel, followed by a path combiner; the
path combiner notifies entities of an unblocked path in the sequence in
which the entities completed their service time, until one entity departs.

You specify the service time, which is the duration of service, via a
parameter, attribute, or signal, depending on the Service time from
parameter value. The block determines the service time for an entity
upon its arrival.

The IN port of an infinite server is always available. You can interpret
an infinite server as a mechanism for delaying entities. Some
discussions of this block suggest this interpretation by using the word
delay instead of serve.

Ports

Entity Input Ports

Label Description

IN Port for arriving entities, which will be served.

Signal Input Ports

Label Description

t Service time for a newly arrived entity. This port appears only if you set
Service time from to Signal port t.

16-65

Infinite Server

Entity Output Ports

Label Description

OUT Port for departing entities, which have completed their service time.

Signal Output Ports

Label Description Time of Update When
Statistic Is On

Order of
Update

#d Number of entities that have
departed from this block since
the start of the simulation.

After entity departure 4

#n Number of entities in the
block.

After entity arrival and after
entity departure

3

pe The value is 1 if the block is
holding any pending entities,
that is, entities that have
completed their service time
but cannot depart because
the OUT port is blocked.
The value of this signal is 0
otherwise.

After service completion and
after entity departure

2

#pe The number of entities that
have completed their service
but cannot depart because the
subsequent entity input port
is unavailable.

After service completion and
after entity departure

2

w Sample mean of the waiting
times in this block for all
entities that have departed.
An entity’s waiting time might
exceed its service time if the

After entity departure 1

16-66

Infinite Server

Label Description Time of Update When
Statistic Is On

Order of
Update

OUT port is blocked when the
entity completes service.

Output signals having the same number in the Order of Update column
above are updated in an arbitrary sequence relative to each other; you
should not rely on a specific sequence for your simulation results.

Dialog
Box

Infinite Server Tab

Service time from
Determines whether the service time is computed from a
parameter in this dialog box, a signal input port, or an attribute
of the entity being served.

Service time
The service time for all entities. This field appears only if you set
Service time from to Dialog.

16-67

Infinite Server

Attribute name
The name of the attribute whose value the block uses as the
service time for an entity. This field appears only if you set
Service time from to Attribute.

Service completion event priority
The priority of the service completion event, relative to other
simultaneous events.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

16-68

Infinite Server

Number of entities in block
Controls the presence and behavior of the signal output port
labeled #n.

Status of pending entity departure
Controls the presence of the signal output port labeled pe.

Number of pending entities
Controls the presence and behavior of the signal output port
labeled #pe.

Average wait
Controls the presence and behavior of the signal output port
labeled w.

Examples • “Adding Event-Based Behavior” in the Getting Started documentation

• “Restarting a Timer” on page 10-10

• “Example: Counting Simultaneous Departures from a Server” on
page 1-19

See Also Single Server, N-Server, “Basic Queues and Servers” in the Getting
Started documentation

16-69

Input Switch

Purpose Accept entities from selected entity input port

Library Routing

Description This block selects exactly one entity input port for potential arrivals.
The selected entity input port can change during the simulation. When
one entity input port becomes selected, all others become unavailable.

The possible rules the block uses for selecting an entity input port, as
well as the corresponding values of the Switching criterion parameter
in the dialog box, are listed in the table below.

Switching criterion Value Description

Round robin At the beginning of the simulation, IN1 is selected.
After each departure, the block selects the entity input
port next to the last selected port. After exhausting all
entity input ports, the block returns to the first one, IN1.

Equiprobable At the beginning of the simulation and after each
departure, the block randomly chooses which entity
input port is selected for the next arrival. All entity
input ports are equally likely. The Initial seed
parameter initializes the random number generation
process.

From signal port p Selecting this option creates an additional signal input
port, labeled p. The signal at this port must have integer
values between 1 and the Number of entity input
ports parameter value. The block detects changes in
this integer value and selects the corresponding entity
input port for future arriving entities.

16-70

Input Switch

Ports
Entity Input Ports

Label Description

IN1, IN2,
IN3, etc.

Ports for potential entity arrivals. At any given time, one input port is
selected and the others are unavailable. The Number of entity input
ports parameter determines how many of these entity input ports the block
has.

Signal Input Ports

Label Description

p Index of the entity input port that is available. Values are 1, 2, 3,...,
Number of entity input ports. This port appears only if you set
Switching criterion to From signal port p.

Entity Output Ports

Label Description

OUT Port for departing entities.

16-71

Input Switch

Signal Output Ports

Label Description Time of Update When
Statistic Is On

Order of
Update

#d Number of entities that have
departed from this block since
the start of the simulation.

After entity departure 2

last Index of the input port that
was available the last time an
entity departed. The initial
value is 0. After an entity has
departed, values are 1, 2, 3,...,
Number of entity input
ports.

After entity departure 1

Dialog
Box

Input Switch Tab

Number of entity input ports
Determines how many entity input ports the block has.

16-72

Input Switch

Switching criterion
The rule that determines which entity input port is selected for
receiving entities.

Initial seed
A nonnegative integer that initializes the random number
generator used to select an entity input port. This field appears
only if you set Switching criterion to Equiprobable.

Specify event priority for port selection
Select this option to control the sequencing of the port-selection
event, relative to other simultaneous events. This field appears
only if you set Switching criterion to From signal port p.

Event priority
The priority of the port-selection event, relative to other
simultaneous events. This field appears only if you set Switching
criterion to From signal port p and select Specify event
priority for port selection.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

16-73

Input Switch

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Last entity arrival port
Controls the presence of the signal output port labeled last.

Examples • “Example: Race Conditions at a Switch” on page 2-23

• “Example: Round-Robin Approach to Choosing Inputs” in the Getting
Started documentation

• “Example: Compound Switching Logic” on page 5-5

See Also Output Switch, “Using the Input Switch” in the Getting Started
documentation

16-74

Instantaneous Entity Counting Scope

Purpose Plot entity count versus time

Library SimEvents Sinks

Description This block creates a plot by counting arriving entities at each arrival
time. The block restarts the count from 1 when the time changes.
As a result, the count is cumulative for a given time instant but not
cumulative across the entire simulation.

Note If you want to plot the total number of arriving entities across
the entire simulation, connect the #d signal of the Entity Departure
Counter block to the Signal Scope block.

Use the Enable entity OUT port option to choose whether the entity
advances to a subsequent block or whether the block absorbs the
arriving entity.

Ports

Entity Input Ports

Label Description

IN Port for arriving entities, which the block counts.

Entity Output Ports

Label Description

OUT Port for departing entities. This port appears only if you select Enable
entity OUT port.

16-75

Instantaneous Entity Counting Scope

Dialog
Box

Plotting Tab

Enable entity OUT port
Causes the block to have an entity output port labeled OUT,
through which the arriving entity departs. If you clear this box,
the block absorbs arriving entities.

16-76

Instantaneous Entity Counting Scope

Axes Tab

Initial X axis lower limit, Initial X axis upper limit
The interval shown on the X axis at the beginning of the
simulation. The interval might change from this initial setting
due to zooming, autoscaling, or the If X value is beyond limit
setting.

If X value is beyond limit
Determines how the plot changes if one or more X values are not
within the limits shown on the X axis. For details, see “Varying
Axis Limits Automatically” on page 9-5.

Initial Y axis lower limit, Initial Y axis upper limit
The interval shown on the Y axis at the beginning of the
simulation. The interval might change from this initial setting

16-77

Instantaneous Entity Counting Scope

due to zooming, autoscaling, or the If Y value is beyond limit
setting.

If Y value is beyond limit
Determines how the plot changes if one or more entity counts
are not within the limits shown on the Y axis. For details, see
“Varying Axis Limits Automatically” on page 9-5.

Show grid
Toggles the grid on and off.

Figure Tab

Open at start of simulation
Selecting this option causes the plot window to open when you
start the simulation. If you clear this box, you can open the plot

16-78

Instantaneous Entity Counting Scope

window while the simulation is running by double-clicking the
block icon.

Title
Text that appears as the title of the plot, above the axes.

Y label
Text that appears to the left of the vertical axis.

X label
Text that appears below the horizontal axis.

Position
A four-element vector of the form [left bottom width height]
specifying the position of the scope window. (0,0) is the lower left
corner of the display.

Show number of entities
Displays the number of plotted points using an annotation in the
plotting window.

Examples • “Example: Counting Simultaneous Departures from a Server” on
page 1-19

• “Example: Synchronizing Service Start Times with the Clock” on
page 7-6

See Also Entity Departure Counter, Instantaneous Event Counting Scope,
Chapter 9, “Plotting Data”, “Counting Entities” on page 1-18

16-79

Instantaneous Event Counting Scope

Purpose Plot event count versus time

Library SimEvents Sinks

Description This block creates a plot by counting events. The block restarts the
count from 1 when the time changes. As a result, the count is cumulative
for a given time instant but not cumulative across the entire simulation.

Ports

Signal Input Ports

Label Description

ts Signal whose updates increment the counter. This port appears only if you
set Plot points upon to Sample time hit from port ts.

tr Trigger signal whose edges increment the counter. This port appears only if
you set Plot points upon to Trigger from port tr.

vc Signal whose numerical changes in value increment the counter. This port
appears only if you set Plot points upon to Change in signal from
port vc.

fcn Function-call signal that indicates when to increment the counter. This port
appears only if you set Plot points upon to Function call from port
fcn.

16-80

Instantaneous Event Counting Scope

Dialog
Box

Plotting Tab

Plot points upon
The type of event that indicates when the block increments its
counter.

Trigger type
Determines whether rising, falling, or either type of trigger edge
causes the block to increment its counter. This field appears only
if you set Plot points upon to Trigger from port tr.

Type of value change
Determines whether rising, falling, or either type of value change
causes the block to increment its counter. This field appears only if
you set Plot points upon to Change in signal from port vc.

16-81

Instantaneous Event Counting Scope

Axes Tab

Initial X axis lower limit, Initial X axis upper limit
The interval shown on the X axis at the beginning of the
simulation. The interval might change from this initial setting
due to zooming, autoscaling, or the If X value is beyond limit
setting.

If X value is beyond limit
Determines how the plot changes if one or more X values are not
within the limits shown on the X axis. For details, see “Varying
Axis Limits Automatically” on page 9-5.

Initial Y axis lower limit, Initial Y axis upper limit
The interval shown on the Y axis at the beginning of the
simulation. The interval might change from this initial setting

16-82

Instantaneous Event Counting Scope

due to zooming, autoscaling, or the If Y value is beyond limit
setting.

If Y value is beyond limit
Determines how the plot changes if one or more event counts
are not within the limits shown on the Y axis. For details, see
“Varying Axis Limits Automatically” on page 9-5.

Show grid
Toggles the grid on and off.

Figure Tab

Open at start of simulation
Selecting this option causes the plot window to open when you
start the simulation. If you clear this box, you can open the plot

16-83

Instantaneous Event Counting Scope

window while the simulation is running by double-clicking the
block icon.

Title
Text that appears as the title of the plot, above the axes.

Y label
Text that appears to the left of the vertical axis.

X label
Text that appears below the horizontal axis.

Position
A four-element vector of the form [left bottom width height]
specifying the position of the scope window. (0,0) is the lower left
corner of the display.

Show number of points
Displays the number of plotted points using an annotation in the
plotting window.

Examples See “Example: Plotting Event Counts to Find Roundoff Error” on page
9-12.

See Also Signal Scope, Instantaneous Entity Counting Scope, Chapter 9,
“Plotting Data”, “Observing Events” on page 2-28

16-84

LIFO Queue

Purpose Store entities in stack for undetermined length of time

Library Queues

Description This block stores up to N entities simultaneously, where N is the
Capacity parameter value. The block attempts to output an entity
through the OUT port but retains the entity if the OUT port is blocked.
If the block is storing multiple entities, then entities depart in a last-in,
first-out (LIFO) fashion. The length of time that an entity stays in this
block cannot be determined in advance.

The IN port is unavailable whenever this block stores exactly N entities.
In this case, the queue is said to be full.

Ports

Entity Input Ports

Label Description

IN Port for arriving entities, which will be stored.

Entity Output Ports

Label Description

OUT Port for departing entities.

16-85

LIFO Queue

Signal Output Ports

Label Description Time of Update When
Statistic Is On

Order of
Update

#d Number of entities that have
departed from this block since
the start of the simulation.

After entity departure 4

#n Number of entities currently
in the queue.

After entity arrival at a
nonempty queue and after
entity departure

3

pe A value of 1 indicates when
the block tries and fails to
output an entity; that is, the
queue is nonempty. A value of
0 indicates when the queue is
empty.

After entity arrival and before
entity departure

2

w Sample mean of the waiting
times in this block for all
entities that have departed.

After entity departure 1

len Average number of entities
in the queue over time, that
is, the time average of the #n
signal.

After entity arrival at a
nonempty queue and after
entity departure

1

Output signals having the same number in the Order of Update column
above are updated in an arbitrary sequence relative to each other; you
should not rely on a specific sequence for your simulation results.

16-86

LIFO Queue

Dialog
Box

LIFO Queue Tab

Capacity
Determines how many entities the block can store at a time.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

16-87

LIFO Queue

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Number of entities in queue
Controls the presence and behavior of the signal output port
labeled #n.

Status of pending entity departure
Controls the presence of the signal output port labeled pe.

Average wait
Controls the presence and behavior of the signal output port
labeled w.

Average queue length
Controls the presence and behavior of the signal output port
labeled len.

Examples See “Example: Waiting Time in LIFO Queue” on page 4-2.

16-88

LIFO Queue

See Also FIFO Queue, Priority Queue, “Using a LIFO Queuing Discipline” on
page 4-2

16-89

N-Server

Purpose Serve up to N entities for period of time

Library Servers

Description This block stores up to N entities, serving each one independently for
a period of time and then attempting to output the entity through the
OUT port. If the OUT port is blocked, then the entity stays in this block
until the port becomes unblocked. An N-server is like a set of N single
servers connected in parallel, followed by a path combiner; the path
combiner notifies entities of an unblocked path in the sequence in which
the entities completed their service time, until one entity departs.

You specify the service time, which is the duration of service, via a
parameter, attribute, or signal, depending on the Service time from
parameter value. The block determines the service time for an entity
upon its arrival.

All entities that arrive do so via the IN port. The IN port is unavailable
whenever this block contains N entities. In that case, the IN port
becomes available when at least one of the N entities departs.

Ports

Entity Input Ports

Label Description

IN Port for arriving entities, which will be served.

Signal Input Ports

Label Description

t Service time for a newly arrived entity. This port appears only if you set
Service time from to Signal port t.

16-90

N-Server

Entity Output Ports

Label Description

OUT Port for departing entities, which have completed their service time.

Signal Output Ports

Label Description Time of Update When
Statistic Is On

Order of
Update

#d Number of entities that have
departed from this block since
the start of the simulation.

After entity departure 4

#n Number of entities currently
in the block, between 0 and N.

After entity arrival and after
entity departure

3

pe A value of 1 indicates when
the block contains at least
one entity that has completed
its service but cannot depart
because the subsequent entity
input port is unavailable.

After service completion and
after entity departure

2

#pe Number of entities that have
completed their service but
cannot depart because the
subsequent entity input port
is unavailable.

After service completion and
after entity departure

2

16-91

N-Server

Label Description Time of Update When
Statistic Is On

Order of
Update

w Sample mean of the waiting
times in this block for all
entities that have departed.
An entity’s waiting time might
exceed its service time if the
OUT port is blocked when the
entity completes service.

After entity departure 1

util Utilization of the N-server. If
Number of servers is finite,
util is the time average of
the fraction of servers that
are storing an entity. At time
values when an entity arrives
or departs, util equals 1/N
times the time average of
the #n signal. If Number of
servers is infinite, then util
is always zero.

Performance considerations
cause the block to suppress
signal updates until specific
occurrences cause updates.
In On mode, updates occur
after an entity departure and
after an entity arrival. In
Upon stop or pause mode,
stopping or pausing the
simulation causes an update.

1

Output signals having the same number in the Order of Update column
above are updated in an arbitrary sequence relative to each other; you
should not rely on a specific sequence for your simulation results.

A more precise definition of the utilization signal util at time T is

1
T

n

N
Ik
k

k

#
)

()⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ⋅∑ length(

where Ik is the kth time interval between successive pairs of times that

util is updated and # n k() is the number of entities the N-Server block
is storing during the open interval Ik.

16-92

N-Server

Dialog
Box

N-Server Tab

Number of servers
The number of servers the block represents, N.

Service time from
Determines whether the service time is computed from a
parameter in this dialog box, an input signal, or an attribute of
the entity being served.

Service time
The service time for all entities. This field appears only if you set
Service time from to Dialog.

Attribute name
The name of the attribute whose value the block uses as the
service time for an entity. This field appears only if you set
Service time from to Attribute.

16-93

N-Server

Service completion event priority
The priority of the service completion event, relative to other
simultaneous events.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Number of entities in block
Controls the presence and behavior of the signal output port
labeled #n.

16-94

N-Server

Status of pending entity departure
Controls the presence of the signal output port labeled pe.

Number of pending entities
Controls the presence and behavior of the signal output port
labeled #pe.

Average wait
Controls the presence and behavior of the signal output port
labeled w.

Utilization
Controls the presence and behavior of the signal output port
labeled util.

Examples See “Example: M/M/5 Queuing System” on page 4-13.

See Also Single Server, Infinite Server, “Modeling Multiple Servers” on page 4-13

16-95

Output Switch

Purpose Select entity output port for departure

Library Routing

Description This block receives entities and outputs them through one of multiple
entity output ports. The selected port can change during the simulation.
The Switching criterion parameter indicates how the block
determines which entity output port is selected for departure at any
given time. When the selected port is not blocked, an arriving entity
departs through this port. When the selected port is blocked, this block’s
entity input port is unavailable and entities cannot arrive.

The values of the Switching criterion parameter are described in
the table below.

Switching criterion Value Description

Round robin The first arriving entity in the simulation
departs via the OUT1 port. Upon each
subsequent arrival, the block selects the
entity output port next to the last selected
port. After exhausting all entity output
ports, the block returns to the first one,
OUT1.

Equiprobable At the beginning of the simulation and upon
each departure, the block randomly chooses
the entity output port through which the
next arriving entity departs. All entity
output ports are equally likely to be selected.
The Initial seed parameter initializes the
random number generation process.

16-96

Output Switch

Switching criterion Value Description

First port that is not blocked When an entity attempts to arrive, the
block attempts to output the entity through
OUT1. If that port is blocked, then the
block attempts to output the entity through
OUT2, and so on. If all entity output ports
are blocked, then this block’s IN port is
unavailable and the entity cannot arrive.

From signal port p Selecting this option creates an additional
signal input port, labeled p. The signal
at this port uses integer values between 1
and the Number of entity output ports
parameter value to refer to entity output
ports. The block monitors the p signal’s
value throughout the simulation. When
an entity arrives and the entity output
port corresponding to the p signal is not
blocked, the entity departs through that
entity output port. If the indicated entity
output port is blocked, then this block does
not accept the entity for arrival until either
the port becomes unblocked or the p signal
changes to indicate an entity output port
that is not blocked.

From attribute The block outputs an arriving entity through
the entity output port that corresponds to
the value of an attribute of your choice.
Name the attribute using the Attribute
name parameter. The attribute value must
be an integer between 1 and the Number
of entity output ports parameter value. If
the indicated entity output port is blocked,
then this block does not accept the entity for
arrival until the entity output port becomes
unblocked.

16-97

Output Switch

Ports

Entity Input Ports

Label Description

IN Port for arriving entities.

Signal Input Ports

Label Description

p Index of the entity output port through which an arriving entity departs.
Values are 1, 2, 3,..., Number of entity output ports. This port appears
only if you set Switching criterion to From signal port p.

Entity Output Ports

Label Description

OUT1,
OUT2,
OUT3, etc.

Entity ports through which an arriving entity departs, where the
Switching criterion parameter determines which of multiple ports the
entity departs through. The Number of entity output ports parameter
determines how many of these entity output ports the block has.

16-98

Output Switch

Signal Output Ports

Label Description Time of Update When
Statistic Is On

Order of
Update

#d Number of entities that have
departed from this block since
the start of the simulation.

After entity departure 2

last Index of the output port
through which the last entity
departed. The initial value
is 0. After an entity has
departed, values of this signal
are 1, 2, 3,..., Number of
entity output ports.

After entity departure 1

Dialog
Box

Output Switch Tab

Number of entity output ports
Determines how many entity output ports the block has.

16-99

Output Switch

Switching criterion
The rule that determines which entity output port an arriving
entity departs through.

Initial seed
A nonnegative integer that initializes the random number
generator used to select an entity output port. This field appears
only if you set Switching criterion to Equiprobable.

Attribute name
The name of an attribute used to select an entity output port.
This field appears only if you set Switching criterion to From
attribute.

Specify event priority for port selection
Select this option to control the sequencing of the port-selection
event, relative to other simultaneous events. This field appears
only if you set Switching criterion to From signal port p.

Event priority
The priority of the port-selection event, relative to other
simultaneous events. This field appears only if you set Switching
criterion to From signal port p and select Specify event
priority for port selection.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

16-100

Output Switch

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Last entity departure port
Controls the presence of the signal output port labeled last.

Examples • “Example: Selecting the First Available Server” in the Getting
Started documentation

• “Example: Using an Attribute to Select an Output Port” in the
Getting Started documentation

• “Example: A Packet Switch” in the Getting Started documentation

• “Example: Choosing the Shortest Queue” on page 6-8

• “Example: Using Servers in Shifts” on page 6-4

See Also Input Switch, “Using the Output Switch” in the Getting Started
documentation

16-101

Path Combiner

Purpose Merge entity paths

Library Routing

Description This block accepts entities through any entity input port and outputs
them through a single entity output port. You specify the number of
entity input ports using the Number of entity input ports parameter.

If multiple entities arrive at the Path Combiner block simultaneously
while the entity output port is not blocked, then the sequence in which
the entities depart depends on the sequence of departure events from
blocks that precede the Path Combiner block. Although the departure
time is the same for all such entities, the sequence might affect the
system’s behavior. For example, if the entities advance to a queue, the
departure sequence determines their positions in the queue.

Input Port Precedence

The Input port precedence parameter indicates how the block
determines which entity input port to make available first, whenever
the entity output port changes from blocked to unblocked. Choices are
in the table below. For an example illustrating when this parameter
is significant, see “Combining Entity Paths” in the Getting Started
documentation.

Input Port
Precedence

Description Example

IN1 port Each time the entity output port
becomes unblocked, notify entity
input ports IN1, IN2, IN3,...
about the change in status until
either an entity arrives or all
ports are notified.

The sequence of notifications
is always IN1, IN2, IN3,...
throughout the simulation.

16-102

Path Combiner

Input Port
Precedence

Description Example

Equiprobable Each time the entity output
port becomes unblocked, choose
a random entity input port
to notify about the change in
status. All entity output ports
are equally likely to be selected
and the Initial seed parameter
initializes the random number
generation process. If this does
not result in an entity arrival,
then notify the subsequent ports
in turn until either an entity
arrives or all ports are notified.

On a block with four entity input
ports, if the random number is
three, then notify the ports in
the sequence IN3, IN4, IN1,
IN2. If the random number is
two on the next such occasion,
then notify the ports in the
sequence IN2, IN3, IN4, IN1.

Round robin Each time the entity output port
becomes unblocked, notify the
port next to the one through
which the last departing entity
arrived. The IN1 port is
considered “next to” the last
entity input port on the block.
If this does not result in an
entity arrival, then notify the
subsequent ports in turn until
either an entity arrives or all
ports are notified.

On a block with four entity
input ports, an entity arrives
through the IN2 port and
advances to a Single Server
block, whose entity input
port becomes unavailable.
Meanwhile, entities attempt to
arrive at the Path Combiner
block. When the server becomes
available, the Path Combiner
block notifies the ports in the
sequence IN3, IN4, IN1, IN2.
This sequence starts with IN3
because it is next to IN2, which
is the port through which the
last departing entity arrived.

From signal port
p

Each time the entity output port
becomes unblocked, notify the
port whose index is the value of
the p input signal. If this does

On a block with four entity
input ports, if the value of the p
signal is three, then notify the
ports in the sequence IN3, IN4,

16-103

Path Combiner

Input Port
Precedence

Description Example

not result in an entity arrival,
then notify the subsequent ports
in turn until either an entity
arrives or all ports are notified.

IN1, IN2. If the value of the p
signal is two on the next such
occasion, then notify the ports
in the sequence IN2, IN3, IN4,
IN1.

Ports

Entity Input Ports

Label Description

IN1, IN2,
IN3, etc.

Port for arriving entities. The Number of entity input ports parameter
determines how many of these entity input ports the block has.

Signal Input Ports

Label Description

p Index of the entity input port that the block makes available first, upon an
event that changes the entity output port from blocked to unblocked. Values
are 1, 2, 3,..., Number of entity input ports. This port appears only if you
set Input port precedence to From signal port p.

Entity Output Ports

Label Description

OUT Port for departing entities.

16-104

Path Combiner

Signal Output Ports

Label Description Time of Update When
Statistic Is On

Order of
Update

#d Number of entities that have
departed from this block since
the start of the simulation.

After entity departure 2

last Index of the input port
through which the last entity
arrived. The initial value is
0. After an entity has arrived
and departed, values are 1,
2, 3,..., Number of entity
input ports.

After entity departure 1

Dialog
Box

Path Combiner Tab

Number of entity input ports
Determines how many entity input ports the block has.

16-105

Path Combiner

Status Notification Tab

Input port precedence
Determines which entity input port the block makes available
first, upon an event that changes the entity output port from
blocked to unblocked.

Initial seed
A nonnegative integer that initializes the random number
generator used to select an entity input port to notify first about
status changes. This field appears only if you set Input port
precedence to Equiprobable.

Specify event priority for port precedence selection
Select this option to control the sequencing of the event that
updates the port precedence, relative to other simultaneous
events. This field appears only if you set Switching criterion
to From signal port p.

Event priority
The priority of the event that updates the port precedence,
relative to other simultaneous events. This field appears only if
you set Switching criterion to From signal port p and select
Specify event priority for port selection.

16-106

Path Combiner

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Last entity arrival port
Controls the presence and behavior of the signal output port
labeled last.

Examples • “Combining Entity Paths” in the Getting Started documentation

• “Example: A Packet Switch” in the Getting Started documentation

• “Example: First Entity as a Special Case” on page 7-10

See Also Input Switch, Output Switch, “Combining Entity Paths” in the Getting
Started documentation

16-107

Priority Queue

Purpose Store entities in sorted sequence for undetermined length of time

Library Queues

Description This block stores up to N entities simultaneously in a sorted sequence,
where N is the Capacity parameter value. The queue sorts entities
according to the values of an attribute, in either ascending or descending
order. Use the Sorting attribute name and Sorting direction
parameters to determine the sorting behavior. The block accepts real
numbers, Inf, and -Inf as valid values of the sorting attribute.

The block attempts to output an entity through the OUT port but
retains the entity if the OUT port is blocked. The length of time that
an entity stays in this block cannot be determined in advance. The IN
port is unavailable whenever this block stores exactly N entities. In this
case, the queue is said to be full.

While you can view the value of the sorting attribute as an entity
priority, this value has nothing to do with event priorities or block
priorities.

Ports

Entity Input Ports

Label Description

IN Port for arriving entities, which will be stored.

Entity Output Ports

Label Description

OUT Port for departing entities.

16-108

Priority Queue

Signal Output Ports

Label Description Time of Update When
Statistic Is On

Order of
Update

#d Number of entities that have
departed from this block since
the start of the simulation.

After entity departure 4

#n Number of entities currently
in the queue.

After entity arrival at a
nonempty queue and after
entity departure

3

pe A value of 1 indicates when
the block tries and fails to
output an entity; that is, the
queue is nonempty. A value of
0 indicates when the queue is
empty.

After entity arrival and after
entity departure

2

w Sample mean of the waiting
times in this block for all
entities that have departed.

After entity departure 1

len Average number of entities
in the queue over time, that
is, the time average of the #n
signal.

After entity arrival at a
nonempty queue and after
entity departure

1

Output signals having the same number in the Order of Update column
above are updated in an arbitrary sequence relative to each other; you
should not rely on a specific sequence for your simulation results.

16-109

Priority Queue

Dialog
Box

Priority Queue Tab

Capacity
Determines how many entities the block can store at a time.

Sorting attribute name
The block uses this attribute to sort entities in the queue.

Sorting direction
Determines whether the entity at the head of the queue is the one
with the smallest (Ascending) or largest (Descending) value of
the attribute named above. Entities sharing the same attribute
value are sorted in FIFO sequence.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

16-110

Priority Queue

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Number of entities in queue
Controls the presence and behavior of the signal output port
labeled #n.

Status of pending entity departure
Controls the presence of the signal output port labeled pe.

Average wait
Controls the presence and behavior of the signal output port
labeled w.

Average queue length
Controls the presence and behavior of the signal output port
labeled len.

Examples • “Example: Serving Preferred Customers First” on page 4-6

• “Example: Preemption by High-Priority Entities” on page 4-11

16-111

Priority Queue

See Also FIFO Queue, LIFO Queue, Single Server, “Sorting by Priority” on page
4-5

16-112

Read Timer

Purpose Report statistical data about named timer associated with arriving
entities

Library Timing

Description This block reads the value of a timer that the Start Timer block
previously associated with the arriving entity. Using the Report
elapsed time and Report average elapsed time parameters, you
can configure the block to report the following statistics via the et and
w signal output ports, respectively:

• The instantaneous value from the named timer associated with the
arriving entity

• The average of et values among all entities that have arrived at this
block during the simulation and possessed a timer of the specified
name

Note If the arriving entity does not possess a timer of that name, then
you can configure the block to either produce an error or ignore the
timer’s absence. In the latter case, the output signals maintain their
previous values.

The timer continues timing after the entity departs from this block,
which is relevant if the same entity arrives at another Read Timer block
later in the simulation.

For more information about using this block with the Start Timer block,
see “Using Timers” on page 10-7.

16-113

Read Timer

Ports

Entity Input Ports

Label Description

IN Port for arriving entities.

Entity Output Ports

Label Description

OUT Port for departing entities.

Signal Output Ports

Label Description Time of Update When
Statistic Is On

Order of
Update

et Instantaneous elapsed time
for the arriving entity, if
it possesses a timer of the
specified name.

After entity departure 2

w Average among the et values
for all entities that have
arrived at this block and
possessed a timer of the
specified name.

After entity departure 1

#d Number of entities that have
departed from this block since
the start of the simulation.

After entity departure 3

#t Total number of entities that
have departed from this block
and possessed a timer of the
specified name.

After entity departure 2

16-114

Read Timer

Output signals having the same number in the Order of Update column
above are updated in an arbitrary sequence relative to each other; you
should not rely on a specific sequence for your simulation results.

Dialog
Box

Read Timer Tab

Timer tag
Name of the timer to read. This timer tag corresponds to the
Timer tag parameter of a Start Timer block in the model.

If entity does not have tagged timer
Behavior of the block if an arriving entity does not possess a timer
with the specified timer tag.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

16-115

Read Timer

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Number of entities departed with specified tag
Controls the presence and behavior of the signal output port
labeled #t. If you set If entity does not have tagged timer to
Ignore, then the #t value might be less than the #d value.

Report elapsed time
Controls the presence of the signal output port labeled et.

Report average elapsed time
Controls the presence and behavior of the signal output port
labeled w.

Examples • “Basic Procedure for Using Timer Blocks” on page 10-8

• “Timing Multiple Entity Paths with One Timer” on page 10-9

• “Restarting a Timer” on page 10-10

• “Timing Multiple Processes Independently” on page 10-12

16-116

Read Timer

See Also Start Timer, “Using Timers” on page 10-7

16-117

Release Gate

Purpose Permit one pending entity to arrive when event occurs

Library Gates

Description This block permits the arrival of one pending entity when a signal-based
event or function call occurs; at all other times, the block’s entity input
port is unavailable. By definition, the gate’s opening permits one
pending entity to arrive if able to advance immediately to the next block.

No simulation time passes between the opening and subsequent closing
of the gate; that is, the gate opens and then closes in the same time
instant. If no entity is already pending when the gate opens, then the
gate closes without processing any entities.

The Open gate upon parameter determines the type of event that
opens the gate. Possible types are

• Edges in a trigger signal

• Changes in the numerical value of a signal

• Function calls

For more details, see “Opening a Gate Instantaneously” on page 7-6.

Ports

Entity Input Ports

Label Description

IN Port for arriving entities.

16-118

Release Gate

Signal Input Ports

Label Description

tr Trigger signal that indicates when to open the gate. This port appears only
if you set Open gate upon to Trigger from port tr.

vc Control signal whose numerical changes indicate when to open the gate.
This port appears only if you set Open gate upon to Change in signal
from port vc.

fcn Function-call signal that indicates when to open the gate. This port appears
only if you set Open gate upon to Function call from port fcn.

Entity Output Ports

Label Description

OUT Port for departing entities.

Signal Output Ports

Label Description Time of Update When Statistic
Is On

#d Number of entities that have
departed from this block since the
start of the simulation.

After entity departure

16-119

Release Gate

Dialog
Box

Release Gate Tab

Open gate upon
Determines the type of event that causes the gate to open
instantaneously.

Trigger type
Determines whether rising, falling, or either type of trigger edge
causes the gate to open. This field appears only if you set Open
gate upon to Trigger from port tr.

Type of change in signal value
Determines whether rising, falling, or either type of value change
causes the gate to open. This field appears only if you set Open
gate upon to Change in signal from port vc.

Specify event priority for gate opening
Select this option to control the sequencing of the gate-opening
event, relative to other simultaneous events.

Event priority
The priority of the gate-opening event, relative to other
simultaneous events. This field appears only if you select Specify
event priority for gate opening.

16-120

Release Gate

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Examples • “Example: Synchronizing Service Start Times with the Clock” on
page 7-6

• “Example: First Entity as a Special Case” on page 7-10

See Also Enabled Gate, Chapter 7, “Regulating Arrivals Using Gates”

16-121

Replicate

Purpose Output copies of entity

Library Routing

Description This block outputs a copy of the arriving entity through each entity
output port. You specify the number of copies that the block makes,
using the Number of entity output ports parameter.

If any of the block’s entity output ports is blocked, then the entity
input port is unavailable. That is, the block does not accept entities to
replicate unless all entity output ports are connected to available ports
of subsequent blocks.

Departure Port Precedence

Each time the block replicates an entity, the copies depart in a sequence
whose start is determined by the Departure port precedence
parameter. Choices are in the table below.

16-122

Replicate

Parameter Value Description Example

OUT1 port Each time the block replicates
an entity, the copies depart
via entity output ports OUT1,
OUT2, OUT3,..., in that
sequence.

The sequence of departures is
always OUT1, OUT2, OUT3,...
throughout the simulation.

Round robin Each time the block replicates
an entity, the first copy departs
via the port after the one that
received preference on the last
such occasion. The remaining
copies depart via the subsequent
ports in turn.

On a block with three entity
output ports, the first time the
block replicates an entity, the
copies depart in the sequence
OUT1, OUT2, OUT3. The
second time, the copies depart
in the sequence OUT2, OUT3,
OUT1. The third time, the
copies depart in the sequence
OUT3, OUT1, OUT2. The
fourth time is analogous to the
first time, and so on.

Equiprobable Each time the block replicates
an entity, the first copy departs
via a randomly selected entity
output port. All entity output
ports are equally likely to be
selected and the Initial seed
parameter initializes the random
number generation process. The
remaining copies depart via the
subsequent ports in turn.

On a block with four entity
output ports, if the random
number is three, then the copies
depart in the sequence OUT3,
OUT4, OUT1, OUT2. If the
random number is two on the
next such occasion, then the
copies depart in the sequence
OUT2, OUT3, OUT4, OUT1.

16-123

Replicate

Ports

Entity Input Ports

Label Description

IN Port for arriving entities.

Entity Output Ports

Label Description

OUT1,
OUT2,
OUT3, etc.

Port for departing entities, which are copies of the arriving entity. The
Number of entity output ports parameter determines how many of these
entity input ports the block has.

Signal Output Ports

Label Description Time of Update When Statistic
Is On

#a Number of entities that have arrived
at this block.

After entity departure

16-124

Replicate

Dialog
Box

Replicate Tab

Number of entity output ports
Determines how many entity output ports the block has; that is,
how many copies the block makes for each entity it processes.

Departure port precedence
Determines the start of the sequence in which the block outputs
the copies, each time the block replicates an entity.

Initial seed
A nonnegative integer that initializes the random number
generator used to determine the output sequence. This field
appears only if you set Departure port precedence to
Equiprobable.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

16-125

Replicate

Number of entities arrived
Controls the presence and behavior of the signal output port
labeled #a. While most blocks count departures, this block counts
arrivals to avoid ambiguity; the number is independent of the
number of entity output ports.

Examples See “Example: Waiting Time in LIFO Queue” on page 4-2.

See Also Event-Based Entity Generator, Path Combiner, “Replicating Entities
on Multiple Paths” on page 1-22

16-126

Set Attribute

Purpose Assign data to entity

Library Attributes

Description This block accepts an entity, assigns data to it, and then outputs it.
Assigned data is stored in attributes of the entity, where each attribute
has a name and a value.

You can assign up to four attributes with a single instance of this block.
For each attribute you want to set, configure one of the tabs named A1,
A2, A3, and A4 in the block’s dialog box using one of these procedures:

Assigning a Constant Value Using This Dialog Box

1 Set Attribute assignment to Specify via dialog.

2 Specify the name of attribute you want to set, in the Attribute name
field. All valid MATLAB variable names, except nan and inf (with
any use of case), are valid as attribute names. To determine whether a
name is a valid MATLAB variable name, use the isvarname function.

3 Specify the constant value for the attribute in the Value field.

Assigning a Value Using an Input Signal

1 Set Attribute assignment to From signal port Ax, where x is
1, 2, 3, or 4.

2 Specify the name of attribute you want to set, in the Attribute name
field. All valid MATLAB variable names, except nan and inf (with
any use of case), are valid as attribute names. To determine whether a
name is a valid MATLAB variable name, use the isvarname function.

3 Click OK or Apply. The block now has a signal input port labeled Ax.

4 Connect a signal to the Ax input port. During the simulation, the
block assigns the value of this signal to the attribute.

16-127

Set Attribute

If you want to set fewer than the maximum number of attributes, then
you can deactivate tabs that you are not using by setting those tabs’
Attribute assignment parameters to Off.

Ports

Entity Input Ports

Label Description

IN Port for arriving entities.

Signal Input Ports

Label Description

Ax Data to assign for the attribute specified on the Ax tab of the dialog. This
port appears only if you set Attribute assignment on the Ax tab to From
signal port Ax.

Entity Output Ports

Label Description

OUT Port for departing entities, with data assigned to them.

Signal Output Ports

Label Description Time of Update When Statistic
Is On

#d Number of entities that have
departed from this block since the
start of the simulation.

After entity departure

16-128

Set Attribute

Dialog
Box

A1, A2, A3, A4 Tabs

The A1, A2, A3, and A4 tabs have similar parameter choices. By
assigning different values to the parameters, you can configure this
block to assign up to four different attributes for each entity that the
block processes.

Attribute assignment
Determines whether the data for attribute values comes from the
dialog or a signal. Choosing Off indicates that you are not using
this tab of the dialog and makes the parameters below inactive
or invisible.

Attribute name
The name of the attribute to set.

Value
The value to assign to the attribute named above. This parameter
appears only if you set Attribute assignment to Specify via
dialog.

Create attribute if not present
Selecting this option enables the block to define new attributes.
Otherwise, the block issues an error if the attribute named above
does not already exist.

16-129

Set Attribute

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Examples • “Example: Setting Attributes” on page 1-12

• “Example: Using an Attribute to Select an Output Port” in the
Getting Started documentation

• “Example: Round-Robin Approach to Choosing Inputs” in the Getting
Started documentation

• “Adding Event-Based Behavior” in the Getting Started documentation

See Also Get Attribute, “Setting Attributes of Entities” on page 1-11

16-130

Signal Latch

Purpose Write input signal value to memory and read memory to output signal
upon events

Library Gates

Description This block stores and outputs the values of the in input signal based on
events:

• The block writes the value of the in signal to an internal memory
location when a “write to memory” event occurs. The Write to
memory upon parameter indicates the type of signal-based event or
function call that causes a write event.

• The block reads the memory value and updates the signal at the
out port, if present, when a “read from memory” event occurs. The
Read from memory upon parameter indicates the type of internal
or external event that causes a read event:

- If you set Read from memory upon to Write to memory event,
then every write event causes a read event. The out signal is like
a resampled version of the in signal.

- Otherwise, the Read from memory upon parameter indicates
the type of signal-based event or function call that causes a read
event. In this case, write and read events occur independently
and are not required to alternate. The out signal is like a delayed
resampled version of the in signal.

This block is useful for modeling feedback loops in discrete-event
systems in which an output from one component is an input to another
component. Because the two components work separately in such a
system, the updates of the input and output signals are independent
in both causality and timing. This block lets you control the causality
and timing associated with storing the output from one component and
updating the value received by the other component.

16-131

Signal Latch

Ports

Signal Input Ports

Label Description

wts Signal whose updates cause write events. This port appears only if you set
Write to memory upon to Sample time hit from port wts.

wtr Trigger signal whose edges cause write events. This port appears only if you
set Write to memory upon to Trigger from port wtr.

wvc Signal whose numerical changes in value cause write events. This port
appears only if you set Write to memory upon to Change in signal
from port wvc.

wfcn Function-call signal that causes write events. This port appears only if you
set Write to memory upon to Function call from port wfcn.

rts Signal whose updates cause read events. This port appears only if you set
Read from memory upon to Sample time hit from port rts.

rtr Trigger signal whose edges cause read events. This port appears only if you
set Read from memory upon to Trigger from port rtr.

rvc Signal whose numerical changes in value cause read events. This port
appears only if you set Read from memory upon to Change in signal
from port rvc.

rfcn Function-call signal that causes read events. This port appears only if you
set Read from memory upon to Function call from port rfcn.

in Signal to be resampled and/or delayed.

16-132

Signal Latch

Signal Output Ports

Label Description Time of Update When
Statistic Is On

Order of
Update

st 0 or 1, depending on whether
the block more recently
processed a read or write
event.

Upon write events and upon
read events

1

mem The value of the block’s
internal memory when a write
event occurs.

Upon write events 1

out The value of the block’s
internal memory when a read
event occurs.

Upon read events 1

Output signals having the same number in the Order of Update column
above are updated in an arbitrary sequence relative to each other; you
should not rely on a specific sequence for your simulation results.

16-133

Signal Latch

Dialog
Box

Write Tab

Initial memory value
The value in the block’s internal memory before the first write
event occurs.

Write to memory upon
The type of signal-based event or function call that causes a write
event.

Trigger type
Determines whether rising, falling, or either type of trigger edge
causes a write event. This field appears only if you set Write to
memory upon to Trigger from port wtr.

Type of change in signal value
Determines whether rising, falling, or either type of value change
causes a write event. This field appears only if you set Write to
memory upon to Change in signal from port wvc.

16-134

Signal Latch

Specify event priority for writing to memory
Select this option to control the sequencing of the write event,
relative to other simultaneous events.

Event priority for writing to memory
The priority of the write event, relative to other simultaneous
events. This field appears only if you select Specify event
priority for writing to memory.

Read Tab

Read from memory upon
The type of signal-based event, function call, or internal write
event that causes a read event.

Trigger type
Determines whether rising, falling, or either type of trigger edge
causes a read event. This field appears only if you set Read from
memory upon to Trigger from port rtr.

16-135

Signal Latch

Type of change in signal value
Determines whether rising, falling, or either type of value change
causes a read event. This field appears only if you set Read from
memory upon to Change in signal from port rvc.

Specify event priority for reading from memory
Select this option to control the sequencing of the write event,
relative to other simultaneous events. This field appears only if
you set Read from memory upon to an option other than Write
to memory event.

Event priority for reading from memory
The priority of the read event, relative to other simultaneous
events. This field appears only if you select Specify event
priority for writing to memory.

Status Tab

Report state of the block
Controls the presence of the signal output port labeled st.

16-136

Signal Latch

Report memory value upon write event
Controls the presence of the signal output port labeled mem.

Report memory value upon read event
Controls the presence of the signal output port labeled out.

Examples Reading from Memory Upon Each Write Event

In the plot below, the output signal reflects values of the input signal
upon each rising or falling value of the wvc signal. Between successive
write events, the output signal maintains the value from the most
recent write event. Before the first write event, the output signal is 0
because of the initial memory value.

16-137

Signal Latch

Independent Read and Write Events

In the plot below, the mem signal reflects values of the input signal
upon each rising or falling value of the wvc signal, while the out signal
reflects values of the mem signal upon each rising or falling value of
the rvc signal.

16-138

Signal Latch

For examples showing the use of this block in a model, see

• “Example: Creating a Random Signal for Switching” on page 3-7

16-139

Signal Latch

• “Generating Random Time-Based Signals” on page 3-8

• “Example: Defining #d Before the First Entity Departure” on page
3-19

• “Example: Resampling a Signal Based on Events” on page 3-20

• “Example: Detecting Collisions by Comparing Events” on page 2-32

• “Example: Compound Switching Logic” on page 5-5

See Also Data Store Memory, Data Store Read, Data Store Write, “Manipulating
Signals” on page 3-18

16-140

Signal Scope

Purpose Plot data from signal

Library SimEvents Sinks

Description This block creates a plot using data from a signal. The plot is
particularly appropriate for data arising from discrete-event simulations
because the plot can include zero-duration values.

The data for the vertical axis comes from the signal connected to the
block’s signal input port labeled in.

The Plot type parameter on the Plotting tab determines whether
and how the block connects the points that it plots. For details, see
“Connections Among Points in Plots” on page 9-4.

Selecting Data for the Horizontal Axis

Use the X value from parameter to select the type of data for the
horizontal axis. The table below describes the choices.

Source of X Data Description of Plot

Event time Plot of the in signal versus simulation time.
For example, you might use this option to see
how the length of a queue changes over time.

Index Plot of the in signal’s successive values against
a horizontal axis that represents the index
of the values. The signal’s first value during
the simulation has an index of 1, the signal’s
second value has an index of 2, and so on.
For example, you might use this option for a
signal that has zero-duration values, to help
determine the exact sequence among values
that the signal assumes simultaneously.

The figures below illustrate the different sources of data for the
horizontal axis. The plots look similar, except that the second plot has

16-141

Signal Scope

uniform horizontal spacing rather than time-based spacing between
successive points.

16-142

Signal Scope

Ports

Signal Input Ports

Label Description

in Signal containing data for the Y axis.

Signal Output Ports

Label Description

#c Number of points the block has plotted.

Dialog
Box

Plotting Tab

16-143

Signal Scope

Plot type
The presentation format for the data. See “Connections Among
Points in Plots” on page 9-4 for details.

X value from
Source of data for the plot’s horizontal axis. See “Selecting Data
for the Horizontal Axis” on page 16-141 for details.

Axes Tab

Initial X axis lower limit, Initial X axis upper limit
The interval shown on the X axis at the beginning of the
simulation. The interval might change from this initial setting
due to zooming, autoscaling, or the If X value is beyond limit
setting.

16-144

Signal Scope

If X value is beyond limit
Determines how the plot changes if one or more X values are not
within the limits shown on the X axis. For details, see “Varying
Axis Limits Automatically” on page 9-5.

Initial Y axis lower limit, Initial Y axis upper limit
The interval shown on the Y axis at the beginning of the
simulation. The interval might change from this initial setting
due to zooming, autoscaling, or the If Y value is beyond limit
setting.

If Y value is beyond limit
Determines how the plot changes if one or more values of the in
signal are not within the limits shown on the Y axis. For details,
see “Varying Axis Limits Automatically” on page 9-5.

Show grid
Toggles the grid on and off.

16-145

Signal Scope

Figure Tab

Open at start of simulation
Selecting this option causes the plot window to open when you
start the simulation. If you clear this box, you can open the plot
window while the simulation is running by double-clicking the
block icon.

Title
Text that appears as the title of the plot, above the axes.

Y label
Text that appears to the left of the vertical axis.

X label
Text that appears below the horizontal axis.

16-146

Signal Scope

Position
A four-element vector of the form [left bottom width height]
specifying the position of the scope window. (0,0) is the lower left
corner of the display.

Show number of points
Displays the number of plotted points using an annotation in the
plotting window.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

16-147

Signal Scope

Number of points plotted
Controls the presence and behavior of the signal output port
labeled #c.

Examples • “Building a Simple Discrete-Event Model” and “Observations from
Plots” in the Getting Started documentation

• “Example: Using Servers in Shifts” on page 6-4

• “Example: Choosing the Shortest Queue” on page 6-8

See Also X-Y Signal Scope, Attribute Scope, Chapter 9, “Plotting Data”

16-148

Signal-Based Event to Function-Call Event

Purpose Convert signal-based events into function calls

Library Event Translation

Description This block converts a signal-based event or a function-call input into
one or two function calls that you can use to invoke function-call
subsystems, Stateflow blocks, or other blocks that accept function-call
inputs. You specify the type of event the block translates and whether
the block suppresses its output under certain conditions.

Criteria for Generating Function Calls

The primary criterion, based on the Generate function call only
upon parameter, is a signal-based event or a function call. By default,
the block issues a function call upon each event of the type you specify.

To issue up to two function calls upon each event, select Generate
optional f2 function call. If the block issues function calls at both the
f1 and f2 output ports, then it issues the f1 call first.

To make the f1 or f2 output function call contingent upon a secondary
criterion, select Suppress function call f1 if enable signal e1 is not
positive or Suppress function call f2 if enable signal e2 is not
positive. The block acquires an additional signal input port, labeled
e1 or e2, to which you connect a control signal. If the control signal is
zero or negative when the block is about to issue the function call, then
the block suppresses the function call. The e1 and e2 ports operate
independently of each other as secondary criteria for their respective
function-call output ports.

16-149

Signal-Based Event to Function-Call Event

Ports

Signal Input Ports

Label Description

ts Primary criterion is satisfied when Simulink updates the signal at this port.
This port appears only if you set Generate function call only upon to
Sample time hit from port ts.

tr Primary criterion is satisfied when the signal has a rising or falling edge,
depending on the Trigger type parameter. This port appears only if you
set Generate function call only upon to Trigger from port tr.

vc Primary criterion is satisfied when the signal at this port increases or
decreases, depending on the Type of change in signal value parameter.
This port appears only if you set Generate function call only upon to
Change in signal from port vc.

fcn Primary criterion is satisfied when this input port detects a function call.
This port appears only if you set Generate function call only upon to
Function call from port fcn. Do not connect this port to an output port
from the same instance of this block.

e1 When this signal is 0 or negative, the block does not issue a function call
at the f1 output port. This input port appears only if you select Suppress
function call f1 if enable signal e1 is not positive.

e2 When this signal is 0 or negative, the block does not issue a function call
at the f2 output port. This input port appears only if you select Suppress
function call f2 if enable signal e2 is not positive.

16-150

Signal-Based Event to Function-Call Event

Signal Output Ports

Label Description Order of
Update

f1 Function call, possibly contingent on e1 input signal 1

f2 Function call, possibly contingent on e2 input signal 2

#f1 Number of function calls the block has generated at the f1 port
during the simulation

3

#f2 Number of function calls the block has generated at the f2 port
during the simulation

3

Output signals having the same number in the Order of Update column
above are updated in an arbitrary sequence relative to each other; you
should not rely on a specific sequence for your simulation results.

Dialog
Box

Function Call Tab

16-151

Signal-Based Event to Function-Call Event

Generate function call only upon
The primary criterion for determining when the block issues a
function call. Optional secondary criteria are established by the
Suppress function call... parameters below.

Trigger type
Determines whether rising, falling, or either type of trigger edge
causes the block to generate a function call. This field appears
only if you set Generate function call only upon to Trigger
from port tr.

Type of change in signal value
Determines whether rising, falling, or either type of value change
causes the block to generate a function call. This field appears
only if you set Generate function call only upon to Change in
signal from port vc.

Suppress function call f1 if enable signal e1 is not positive
Selecting this option causes f1 function calls to be contingent upon
a positive value at the e1 signal input port.

Generate optional f2 function call
Selecting this option causes the block to issue a function call at
the optional f2 output port when appropriate criteria are satisfied.

Suppress function call f2 if enable signal e2 is not positive
Selecting this option causes f2 function calls to be contingent upon
a positive value at the e2 signal input port. This field appears
only if you select Generate optional f2 function call.

16-152

Signal-Based Event to Function-Call Event

Timing Tab

Specify event priority for function-call generation
Select this option to control the sequencing of the function-call
event, relative to other simultaneous events.

Function-call event priority
The priority of the function-call event, relative to other
simultaneous events. This field appears only if you select Specify
event priority for function-call generation.

Function-call time delay
The delay, in seconds, between the input event and the output
function call. A positive value schedules the function call in the
future, while a value of zero schedules the function call at the
current simulation time.

16-153

Signal-Based Event to Function-Call Event

Statistics Tab

Number of f1 function calls
Controls the presence and behavior of the signal output port
labeled #f1.

Number of f2 function calls
Controls the presence and behavior of the signal output port
labeled #f2. This field is active only if you select Generate
optional f2 function call on the Function Call tab of this
dialog box.

Examples • “Example: Detecting Changes in the Last-Updated Signal” on page
3-10

• “Example: Using a #n Signal as a Trigger” on page 12-11

See Also Entity Departure Event to Function-Call Event, “Manipulating Events”
on page 2-37

16-154

Signal-Based Function-Call Event Generator

Purpose Generate function-call events in response to signal-based events

Library Generators / Event Generators

Description This block generates an output function call corresponding to each
signal-based event or input function call. You specify the type of
event the block responds to. You can use the function call to invoke
function-call subsystems, Stateflow blocks, or other blocks that accept
function-call inputs.

This block is similar to the Signal-Based Event to Function-Call Event
block, which offers more flexibility.

Ports

Signal Input Ports

Label Description

ts The block generates a function call when Simulink updates the signal at
this port. This port appears only if you set Generate function call only
upon to Sample time hit from port ts.

tr The block generates a function call when the signal has a rising or falling
edge, depending on the Trigger type parameter. This port appears only if
you set Generate function call only upon to Trigger from port tr.

vc The block generates a function call when the signal at this port increases or
decreases, depending on the Type of change in signal value parameter.
This port appears only if you set Generate function call only upon to
Change in signal from port vc.

fcn The block generates a function call when this input port detects a function
call. This port appears only if you set Generate function call only upon
to Function call from port fcn. Do not connect this port to an output
port from the same instance of this block.

16-155

Signal-Based Function-Call Event Generator

Signal Output Ports

Label Description Order of
Update

f1 Function-call signal. 1

#f1 Number of function calls the block has generated during the
simulation.

2

Dialog
Box

Function Call Tab

Generate function call only upon
The primary criterion for determining when the block issues a
function call. Optional secondary criteria are established by the
Suppress function call... parameters below.

Trigger type
Determines whether rising, falling, or either type of trigger edge
causes the block to generate a function call. This field appears
only if you set Generate function call only upon to Trigger
from port tr.

16-156

Signal-Based Function-Call Event Generator

Type of change in signal value
Determines whether rising, falling, or either type of value change
causes the block to generate a function call. This field appears
only if you set Generate function call only upon to Change in
signal from port vc.

Specify event priority for function-call generation
Select this option to control the sequencing of the function-call
event, relative to other simultaneous events.

Function-call event priority
The priority of the function-call event, relative to other
simultaneous events. This field appears only if you select Specify
event priority for function-call generation.

Statistics Tab

Number of f1 function calls
Controls the presence and behavior of the signal output port
labeled #f1.

Examples • “Example: Calling a Stateflow Block Upon Changes in Server
Contents” on page 2-35

16-157

Signal-Based Function-Call Event Generator

• “Example: Counting Events from Multiple Sources” on page 2-38

See Also Signal-Based Event to Function-Call Event, “Generating Function-Call
Events” on page 2-34

16-158

Single Server

Purpose Serve one entity for period of time

Library Servers

Description This block serves one entity for a period of time and then attempts to
output the entity through the OUT port. If the OUT port is blocked,
then the entity stays in this block until the port becomes unblocked.
You specify the service time, which is the duration of service, via a
parameter, attribute, or signal, depending on the Service time from
parameter value. The block determines the service time for an entity
upon its arrival.

The block permits preemption if you select Permit preemption based
on attribute. In this case, an entity in the server can depart early via
the P port. Preemption occurs only if attributes of the current entity
and the entity attempting to arrive satisfy specified criteria. For details,
see “Preempting an Entity in a Server” on page 4-10.

When the block does not permit preemption, the IN port is unavailable
whenever this block stores an entity. In this case, the IN port becomes
available when the entity departs.

Ports

Entity Input Ports

Label Description

IN Port for arriving entities, which will be served.

Signal Input Ports

Label Description

t Service time for a newly arrived entity. This port appears only if you set
Service time from to Signal port t.

16-159

Single Server

Entity Output Ports

Label Description

OUT Port for departing entities that have completed their service time and have
not been preempted.

P Port for entities that have been preempted by an arriving entity. This port
must not be blocked at the time of preemption.

Signal Output Ports

Label Description Time of Update When
Statistic Is On

Order of
Update

#d Number of entities that have
departed from this block’s
OUT entity output port since
the start of the simulation.

After entity departure from
the OUT port

4

#n Number of entities currently
in the block, either 0 or 1.

After entity arrival and after
entity departure from the
OUT port

3

#p Number of entities that have
been preempted from this
block since the start of the
simulation.

After entity departure from
the P port

4

pe A value of 1 indicates when
the block tries and fails to
output an entity, that is,
an entity has completed its
service but cannot depart
from the OUT port because
the subsequent entity input
port is unavailable.

After service completion and
after entity departure from
the OUT port

2

16-160

Single Server

Label Description Time of Update When
Statistic Is On

Order of
Update

w Sample mean of the waiting
times in this block for all
entities that have departed
from the OUT port. An
entity’s waiting time might
exceed its service time if the
OUT port is blocked when the
entity completes service.

After entity departure from
the OUT port

1

util Utilization of the server,
which is the fraction of
simulation time spent storing
an entity.

Performance considerations
cause the block to suppress
signal updates until specific
occurrences cause updates.
In On mode, updates occur
after an entity departure from
the OUT port and after an
entity arrival. In Upon stop
or pause mode, stopping or
pausing the simulation causes
an update.

1

Output signals having the same number in the Order of Update column
above are updated in an arbitrary sequence relative to each other; you
should not rely on a specific sequence for your simulation results.

16-161

Single Server

Dialog
Box

Single Server Tab

Service time from
Determines whether the service time is computed from a
parameter in this dialog box, an input signal, or an attribute of
the entity being served.

Service time
The service time for all entities. This field appears only if you set
Service time from to Dialog.

16-162

Single Server

Attribute name
The name of the attribute whose value the block uses as the
service time for an entity. This field appears only if you set
Service time from to Attribute.

Service completion event priority
The priority of the service completion event, relative to other
simultaneous events.

Preemption Tab

Permit preemption based on attribute
If you select this option, the block can replace an entity by a
higher-priority entity. Otherwise, the block never permits new

16-163

Single Server

arrivals when it is storing an entity. Selecting this option also
sets Average wait on the Statistics tab to Off and makes that
parameter unavailable.

Sorting attribute name
The block uses this attribute to determine whether a new entity
can preempt the one in the server. This field appears only if you
select Permit preemption based on attribute.

Sorting direction
Preemption occurs when the arriving entity has a strictly smaller
(Ascending) or strictly larger (Descending) value of the attribute
named above, compared to the attribute value of the entity in the
server. This field appears only if you select Permit preemption
based on attribute.

Write residual service time to attribute
If you select this option, a preemption event causes the block to
set an attribute in the preempted entity. The attribute value is
the remaining service time the entity would have required if it
had not been preempted. This field appears only if you select
Permit preemption based on attribute.

Residual service time attribute name
The name of the attribute the block uses to record the residual
service time of preempted entities. This field appears only if you
select Write residual service time to attribute.

Create attribute if not present
Selecting this option enables the block to define a new attribute
for the residual service time. Otherwise, the block issues an
error if the attribute named above does not already exist. This
field appears only if you select Write residual service time to
attribute.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause

16-164

Single Server

the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Number of entities in block
Controls the presence and behavior of the signal output port
labeled #n.

Number of entities preempted
Controls the presence and behavior of the signal output port
labeled #p.

16-165

Single Server

Status of pending entity departure
Controls the presence of the signal output port labeled pe.

Average wait
Controls the presence and behavior of the signal output port
labeled w. This field is available only if you clear the Permit
preemption based on attribute option on the Preemption tab.

Utilization
Controls the presence and behavior of the signal output port
labeled util.

Examples • “Building a Simple Discrete-Event Model” in the Getting Started
documentation

• “Example: Selecting the First Available Server” in the Getting
Started documentation

• “Constructs Involving Queues and Servers” in the Getting Started
documentation

• “Example: Using Servers in Shifts” on page 6-4

• “Example: Preemption by High-Priority Entities” on page 4-11

• “Example: Controlling Joint Availability of Two Servers” on page 7-4

• “Example: Synchronizing Service Start Times with the Clock” on
page 7-6

The following example illustrates the timing of updates of the util
signal, as described in Signal Output Ports on page 16-160.

16-166

Single Server

The server has idle periods that reduce its utilization. However, the
server block recomputes the util signal only when the number of
entities in the server changes. While the definition of utilization says
that the utilization is less than 1 at time 3, the util signal remains at
its previous value of 1 until the next entity arrives at time 4.

16-167

Single Server

In a longer simulation, the differences in the value of util compared to
its theoretical definition become less pronounced.

See Also N-Server, Infinite Server, “Basic Queues and Servers” in the Getting
Started documentation

16-168

Start Timer

Purpose Associate named timer to each arriving entity independently and start
timing

Library Timing

Description This block associates a named timer to each arriving entity
independently and starts the timer. If the entity was previously
associated with a timer of the same name, then the block either
continues or restarts that timer, depending on your setting for the If
timer has already started parameter; the Warn and continue option
can be helpful for debugging or preventing modeling errors. Other
timers, if any, associated with the arriving entity are unaffected.

This block works with the Read Timer block. To read the value of the
timer named in this block, reference the timer name in the Read Timer
block. For more information about using this pair of blocks, see “Using
Timers” on page 10-7.

Ports

Entity Input Ports

Label Description

IN Port for arriving entities.

Entity Output Ports

Label Description

OUT Port for departing entities, which have named timers attached to them.

16-169

Start Timer

Signal Output Ports

Label Description Time of Update When Statistic
Is On

#d Number of entities that have
departed from this block since the
start of the simulation.

After entity departure

Dialog
Box

Start Timer Tab

Timer tag
Name of the timer to associate with each entity.

If timer has already started
Behavior of the block if an arriving entity already has a timer
with the specified timer tag.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

16-170

Start Timer

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Examples • “Basic Procedure for Using Timer Blocks” on page 10-8

• “Timing Multiple Entity Paths with One Timer” on page 10-9

• “Restarting a Timer” on page 10-10

• “Timing Multiple Processes Independently” on page 10-12

See Also Read Timer, “Using Timers” on page 10-7

16-171

Subsystem Configuration

Purpose Configuration for Discrete Event Subsystem block

Library SimEvents Ports and Subsystems

Description Every Discrete Event Subsystem window must contain exactly one copy
of this configuration block. Do not delete this block from the subsystem
window or else the subsystem will not work properly. To create a
subsystem using the Discrete Event Subsystem block, see “Setting Up
Signal-Based Discrete Event Subsystems” on page 8-11.

See Also Discrete Event Subsystem, Discrete Event Inport, Chapter 8,
“Controlling Timing Using Subsystems”

16-172

Time-Based Entity Generator

Purpose Generate entities using intergeneration times from signal or statistical
distribution

Library Generators / Entity Generators

Description This block is designed to generate entities using intergeneration times
that satisfy criteria that you specify. The intergeneration time is the
time interval between two successive entities.

Intergeneration Times Value of Generate entities
with Parameter

Distributed according to various
parameters in the block’s dialog
box

Intergeneration time from
dialog

Specified using an input signal
that the block reads at the start
of the simulation and each time it
generates an entity

Intergeneration time from
port t

For details about these options, see “Introduction to the Time-Based
Entity Generator”.

Responding to Blockage at the Entity Output Port

You can choose how this block responds when it generates an entity that
the subsequent input port is not available to accept. If applicable, you
can also choose how the block responds when that port later becomes
available.

• If you set Response when blocked to Error, then the simulation
halts with an error message if the subsequent entity input port is not
available to accept an entity when this block generates it.

• If you set Response when blocked to Pause generation, then
this block holds the generated entity and temporarily suspends the
generation of additional entities. When this block is notified that the
subsequent entity input port has become available, the held entity

16-173

Time-Based Entity Generator

departs. The Response when unblocked parameter determines
when this block resumes normal operation.

- If you set Response when unblocked to Immediate restart,
then this block resumes its normal entity-generation operation
after the held entity departs.

- If you set Response when unblocked to Delayed restart, then
this block waits a residual amount of time after the held entity
departs. Then the block resumes its normal entity-generation
operation. The residual amount of time is the difference between
the time the entity was supposed to depart and the most recent
time that the subsequent entity input port changed from available
to unavailable.

To illustrate these options, consider a Time-Based Entity Generator
block followed by a Single Server block, followed in turn by an Entity
Sink block.

Suppose the entity generator has Response when blocked set to
Pause generation. Also, suppose that the intergeneration time is 1
with the first entity generated at T=1, and that the service times for
the first three entities in the server are 1.5, 2.2, and 1.8. The tables
below indicate how the Response when unblocked values affect the
behavior in the simulation.

16-174

Time-Based Entity Generator

Immediate Restart

Time
(s)

Behavior

1 Entity generator generates and outputs the first entity
to the server. The server’s entity input port becomes
unavailable. The first entity is scheduled to depart from
the server at T=2.5.

2 Entity generator generates the second entity and holds it
because the OUT port is blocked.

2.5 First entity departs from the server. The server’s entity
input port becomes available and the second entity
advances from the entity generator to the server. The
server’s entity input port becomes unavailable again.
The second entity is scheduled to complete service at
T=2.5+2.2=4.7. The entity generator resumes entity
generation; because the last scheduled generation was at
T=2 and the intergeneration time is 1, the next generation
is scheduled for T=3.

3 Entity generator generates the third entity, and holds it
because the OUT port is blocked.

4 Entity generator suppresses entity generation because the
OUT port is blocked and the block is already holding the
entity it generated at T=3.

4.7 Second entity departs from the server. The server’s entity
input port becomes available and the third entity advances
from the entity generator to the server. The server’s entity
input port becomes unavailable again. The third entity
is scheduled to complete service at T=4.7+1.8=6.5. The
entity generator resumes entity generation, with the next
generation scheduled for T=5.

16-175

Time-Based Entity Generator

Delayed Restart

Time
(s)

Behavior

1 Entity generator generates and outputs the first entity
to the server. The server’s entity input port becomes
unavailable. The first entity is scheduled to depart from
the server at T=2.5.

2 Entity generator generates the second entity and holds it
because the OUT port is blocked.

2.5 First entity departs from the server. The server’s entity
input port becomes available and the second entity
advances from the entity generator to the server. The
server’s entity input port becomes unavailable again.
The second entity is scheduled to complete service at
T=2.5+2.2=4.7. The residual time for the second entity
is 2-1=1, so the entity generator waits 1 second before
resuming entity generation.

3.5 Entity generator generates the third entity, and holds it
because the OUT port is blocked.

4.7 Second entity departs from the server. The server’s entity
input port becomes available and the third entity advances
from the entity generator to the server. The server’s
entity input port becomes unavailable again. The third
entity is scheduled to complete service at T=4.7+1.8=6.5.
The residual time for the third entity is 3.5-2.5=1, so the
entity generator waits 1 second before resuming entity
generation.

16-176

Time-Based Entity Generator

Ports

Signal Input Ports

Label Description

t Time interval between the current entity and the next entity. The block
reads the value after the current entity has departed and the block has
updated its output signals, if any. If you do not select Generate entity at
simulation start, then the block also reads the value of this signal at the
start of the simulation. This port appears only if you set Generate entities
with to Intergeneration time from port t.

Entity Output Ports

Label Description

OUT Port through which generated entities depart.

Signal Output Ports

Label Description Time of Update When
Statistic Is On

Order of
Update

#d Number of entities that have
departed from this block since
the start of the simulation.

After entity departure 3

16-177

Time-Based Entity Generator

Label Description Time of Update When
Statistic Is On

Order of
Update

pe A value of 1 indicates when
the block tries and fails to
output an entity.

After entity generation if
OUT port is blocked, and
after entity departure in all
cases

2

w Average intergeneration time,
in seconds, for all pairs of
successive entities that have
departed from this block. The
signal value is 0 before the
second entity departure.

After entity departure 1

Dialog
Box

Entity type
The standard type includes attributes called Priority and
Count with default values of 0, while the blank type includes no
attributes.

Response when blocked, Response when unblocked
Determines how the block responds if a generated entity
cannot depart immediately because the entity input port of the
subsequent block is unavailable; see “Responding to Blockage at
the Entity Output Port” on page 16-173.

16-178

Time-Based Entity Generator

Entity Generation Tab

Generate entities with
Determines where the block gets instructions about when to
generate entities.

Distribution
The statistical distribution of intergeneration times. This
field appears only if you set Generate entities with to
Intergeneration time from dialog.

Period
The time interval between generated entities, in seconds.
This field appears only if you set Generate entities with to
Intergeneration time from dialog and set Distribution to
Constant.

Initial seed
A nonnegative integer that initializes the random number
generator. This field appears only if you set Generate
entities with to Intergeneration time from dialog and set
Distribution to Uniform or Exponential.

Minimum, Maximum
The endpoints, in seconds, of the interval over which the
distribution is uniform. These fields appear only if you set
Generate entities with to Intergeneration time from
dialog and set Distribution to Uniform.

16-179

Time-Based Entity Generator

Mean
The expected value of the exponential distribution. This
field appears only if you set Generate entities with to
Intergeneration time from dialog and set Distribution to
Exponential.

Generation event priority
The priority of the entity-generation event, relative to other
simultaneous events.

Generate entity at simulation start
If you select this option, the block generates the first entity
when the simulation begins and the second entity at the first
intergeneration time. Otherwise, the block generates the first
entity at the first intergeneration time.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

Number of entities departed
Controls the presence and behavior of the signal output port
labeled #d.

Status of pending entity departure
Controls the presence and behavior of the signal output port
labeled pe.

16-180

Time-Based Entity Generator

Average intergeneration time
Controls the presence and behavior of the signal output port
labeled w.

Examples • “Building a Simple Discrete-Event Model” in the Getting Started
documentation

• “Example: Using Random Intergeneration Times in a Queuing
System” in the Getting Started documentation

• “Example: Using a Step Function as Intergeneration Time” in the
Getting Started documentation

• “Example: Using an Arbitrary Discrete Distribution as
Intergeneration Time” in the Getting Started documentation

• “Using Generation Times from a Vector” in the Getting Started
documentation

See Also Event-Based Entity Generator, Entity Sink, “Creating Entities Using
Intergeneration Times” in the Getting Started documentation

16-181

X-Y Attribute Scope

Purpose Plot data from two attributes of arriving entities

Library SimEvents Sinks

Description This block plots a curve using data from two attributes of arriving
entities. Use the Y attribute name and X attribute name parameters
to specify which attributes to plot.

Use the Enable entity OUT port option to choose whether the entity
advances to a subsequent block or whether the block absorbs the
arriving entity.

The Plot type parameter on the Plotting tab determines whether
and how the block connects the points that it plots. For details, see
“Connections Among Points in Plots” on page 9-4.

Ports

Entity Input Ports

Label Description

IN Port for arriving entities, whose attributes contain the data to plot.

Entity Output Ports

Label Description

OUT Port for departing entities. This port appears only if you select Enable
entity OUT port.

16-182

X-Y Attribute Scope

Signal Output Ports

Label Description

#a Number of entities that have arrived at the block since the start of the
simulation.

Dialog
Box

Plotting Tab

Plot type
The presentation format for the data. See “Connections Among
Points in Plots” on page 9-4 for details.

Y attribute name
Name of the attribute to plot along the vertical axis.

16-183

X-Y Attribute Scope

X attribute name
Name of the attribute to plot along the horizontal axis.

Enable entity OUT port
Causes the block to have an entity output port labeled OUT,
through which the arriving entity departs. If you clear this box,
the block absorbs arriving entities.

Axes Tab

Initial X axis lower limit, Initial X axis upper limit
The interval shown on the X axis at the beginning of the
simulation. The interval might change from this initial setting
due to zooming, autoscaling, or the If X value is beyond limit
setting.

16-184

X-Y Attribute Scope

If X value is beyond limit
Determines how the plot changes if one or more X values are not
within the limits shown on the X axis. For details, see “Varying
Axis Limits Automatically” on page 9-5.

Initial Y axis lower limit, Initial Y axis upper limit
The interval shown on the Y axis at the beginning of the
simulation. The interval might change from this initial setting
due to zooming, autoscaling, or the If Y value is beyond limit
setting.

If Y value is beyond limit
Determines how the plot changes if one or more Y values are not
within the limits shown on the Y axis. For details, see “Varying
Axis Limits Automatically” on page 9-5.

Show grid
Toggles the grid on and off.

16-185

X-Y Attribute Scope

Figure Tab

Open at start of simulation
Selecting this option causes the plot window to open when you
start the simulation. If you clear this box, you can open the plot
window while the simulation is running by double-clicking the
block icon.

Title
Text that appears as the title of the plot, above the axes.

Y label
Text that appears to the left of the vertical axis.

X label
Text that appears below the horizontal axis.

16-186

X-Y Attribute Scope

Position
A four-element vector of the form [left bottom width height]
specifying the position of the scope window. (0,0) is the lower left
corner of the display.

Show number of entities
Displays the number of plotted points using an annotation in the
plotting window.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

16-187

X-Y Attribute Scope

Number of entities arrived
Controls the presence and behavior of the signal output port
labeled #a.

Examples You can modify the example in “Example: A Packet Switch” in the
Getting Started documentation to check that all possible combinations
of source and destination are used in the simulation. Insert an X-Y
Attribute Scope block between the Path Combiner and Output Switch
blocks and use it to plot the Destination attribute against the Source
attribute.

See Also Attribute Scope, X-Y Signal Scope, Chapter 9, “Plotting Data”,
“Accessing Attributes of Entities” on page 1-17

16-188

X-Y Signal Scope

Purpose Plot data from two signals

Library SimEvents Sinks

Description This block plots a curve using data from two input signals. The
plot is particularly appropriate for data arising from discrete-event
simulations because the plot can include zero-duration values.

The Plot type parameter on the Plotting tab determines whether
and how the block connects the points that it plots. For details, see
“Connections Among Points in Plots” on page 9-4.

Ports

Signal Input Ports

Label Description

in Signal containing data for Y axis.

x Signal containing data for X axis.

Signal Output Ports

Label Description

#c Number of points the block has plotted.

16-189

X-Y Signal Scope

Dialog
Box

Plotting Tab

Plot type
The presentation format for the data. See “Connections Among
Points in Plots” on page 9-4 for details.

16-190

X-Y Signal Scope

Axes Tab

Initial X axis lower limit, Initial X axis upper limit
The interval shown on the X axis at the beginning of the
simulation. The interval might change from this initial setting
due to zooming, autoscaling, or the If X value is beyond limit
setting.

If X value is beyond limit
Determines how the plot changes if one or more X values are not
within the limits shown on the X axis. For details, see “Varying
Axis Limits Automatically” on page 9-5.

Initial Y axis lower limit, Initial Y axis upper limit
The interval shown on the Y axis at the beginning of the
simulation. The interval might change from this initial setting

16-191

X-Y Signal Scope

due to zooming, autoscaling, or the If Y value is beyond limit
setting.

If Y value is beyond limit
Determines how the plot changes if one or more Y values are not
within the limits shown on the Y axis. For details, see “Varying
Axis Limits Automatically” on page 9-5.

Show grid
Toggles the grid on and off.

Figure Tab

Open at start of simulation
Selecting this option causes the plot window to open when you
start the simulation. If you clear this box, you can open the plot

16-192

X-Y Signal Scope

window while the simulation is running by double-clicking the
block icon.

Title
Text that appears as the title of the plot, above the axes.

Y label
Text that appears to the left of the vertical axis.

X label
Text that appears below the horizontal axis.

Position
A four-element vector of the form [left bottom width height]
specifying the position of the scope window. (0,0) is the lower left
corner of the display.

Show number of points
Displays the number of plotted points using an annotation in the
plotting window.

Statistics Tab

These parameters determine whether certain ports output data
throughout the simulation, output data only when you stop or pause
the simulation, or are omitted from the block. For descriptions of the
affected ports, see the “Signal Output Ports” table above.

16-193

X-Y Signal Scope

Number of points plotted
Controls the presence and behavior of the signal output port
labeled #c.

Examples In the model below, utilization decreases as intergeneration time
increases.

16-194

X-Y Signal Scope

See Also Signal Scope, X-Y Attribute Scope, Chapter 9, “Plotting Data”

16-195

Glossary

Glossary

advance
To depart from one block and arrive immediately at another block. An
entity advances from block to block during a simulation.

arrival
Entrance of an entity to a block via an entity input port. Arrival is the
opposite of departure.

attribute
Data associated with an entity.

For example, an entity might be associated with a size, weight, speed,
or part number.

available
The state of an entity input port that permits entities to arrive at the
block.

For example, when a Single Server block is empty, its entity input
port is available. When the block is busy serving, its entity input port
is unavailable.

blocked
The state of an entity output port when an entity is trying to depart via
the port and the port connects to an unavailable entity input port of
another block.

For example, consider a FIFO Queue block whose entity output port is
connected to the Single Server block’s entity input port. Suppose the
queue contains one entity. The queue’s entity output port is blocked
if the server’s entity input port is unavailable, and not blocked if the
server’s entity input port is available. If the queue is empty, then its
entity output port is not blocked because no entity is trying to depart.

departure
Exit of an entity from a block via an entity output port. Departure is the
opposite of arrival.

Glossary-1

Glossary

discrete event subsystem
A subsystem containing time-based blocks that is called at the exact
time of each qualifying event, rather than at times suggested by
the time-based simulation clock. For the Discrete Event Subsystem
block, qualifying events are signal-based events; for an appropriately
configured Function-Call Subsystem block, qualifying events are
function calls.

For example, the subsystem might contain blocks that end the
simulation if the length of a queue exceeds 100, and might be configured
so that the subsystem executes only at the exact moments when the
queue reports an increased length.

entity
An abstract representation of an item of interest in a discrete-event
simulation. The specific interpretation of an entity depends on what
you are modeling. Entities can carry data, known in SimEvents as
attributes.

For example, an entity could represent a packet in a communication
network, a person using a bank of elevators, or a part on a conveyor belt.

entity input port
An input port at which an entity can potentially arrive. An entity input
port can be available or unavailable; this state, which can change during
the simulation, helps determine whether the port actually accepts the
arrivals of new entities.

entity output port
An output port from which an entity can potentially depart. An entity
output port can have a state of blocked or not blocked; this state, which
can change during the simulation, determines whether the port’s
attempt to output an entity is successful.

entity path
A connection from an entity output port to an entity input port, depicted
as a line connecting the entity ports of two blocks. An entity path
represents the equivalence between an entity’s departure from the first
block and arrival at the second block. The connection line depicts a
relationship between the two blocks.

Glossary-2

Glossary

An entity path is in active use by an entity only at zero or more discrete
times during the simulation. By contrast, a connection line between
signal ports represents a signal that has a well-defined value at all
times during the simulation.

entity port
An entity input port or an entity output port.

entity priority
A real number associated with an entity, used to determine its sequence
in a priority queue.

Contrast with event priority.

entity-departure subsystem
A kind of discrete event subsystem that is called at the exact time of each
entity departure from a block or blocks, rather than at times suggested
by the time-based simulation clock. See “Creating Entity-Departure
Subsystems” on page 8-26 for details.

event
An instantaneous discrete incident that changes a state variable, an
output, and/or the occurrence of other events. The prototypical events
are arrivals and departures of entities.

Examples of events are the generation of a new data packet in
communications, the exit of a person from an elevator, and the
placement of a new part on a conveyor belt.

event calendar
The internal list of all events that are scheduled for the current time
or future times.

For example, when a server begins its service time on a specific
entity, the application inserts an entry into the event calendar for
the completion of service on that entity at a future time. In a system
representing elevator passengers, this event calendar entry might
represent the event whereby a specific person in an elevator reaches
the desired floor.

Glossary-3

Glossary

event priority
A positive integer associated with an event, used to sequence the
processing of simultaneous events. Simultaneous events having distinct
event priorities are processed in ascending order of the event priority
values.

Contrast with entity priority.

event translation
Conversion of one event into another. The result of the translation is
often a function call, but can be another type of event. The result of the
translation can occur at the same time as, or a later time than, the
original event.

event-based signal
A signal that can change in response to discrete events. For example,
the signal representing the number of entities in a queue changes upon
each arrival at or departure from the queue.

event-based simulation
A simulation that permits the system’s state transitions to depend on
asynchronous discrete incidents called events.

function-call event
A discrete invocation request carried from block to block by a special
signal called a function-call signal. A function-call event is also called
simply a function call.

intergeneration time
The time interval between successive generations, as in a Time-Based
Entity Generator block.

monitoring port
A signal input port that is designed for observing signal values.
Contrast with notifying port.

notifying port
A signal input port that notifies the preceding block when a certain
event has occurred. When the preceding block is the Event-Based

Glossary-4

Glossary

Random Number block, it responds to the notification by generating a
new random number.

For example, the t input port of a Single Server block is a notifying port;
when connected to this port, the Event-Based Random Number block
generates a new random number each time it receives notification that
an entity has arrived at the server.

pending entity
An entity that tries and fails to depart from a block. The failure occurs
because the entity output port through which the entity would depart is
connected to an unavailable entity input port of another block.

preemption
The replacement of an entity in a server block by an entity that satisfies
certain criteria.

reactive port
A signal input port that listens for updates or changes in the input
signal and causes an appropriate reaction in the block possessing the
port. For example, the p port on an Input Switch block listens for
changes in the input signal; the block reacts by selecting a new entity
port for potential arrivals.

sample time hit event
An update in the value of a signal that is connected to a block configured
to react to signal updates. The updated value could be the same as or
different from the previous value.

signal port
An input or output port that represents a numerical quantity that
changes over time and that is defined for all times during the simulation.
Unlike an entity port, a signal port has no state and does not have
entity arrivals or entity departures.

signal-based event
A sample time hit event, value change event, or trigger event.

Glossary-5

Glossary

simultaneous events
Events that occur at the same value of the simulation clock, even if
they are processed sequentially.

For example, in a D/D/1 queuing system where the arrival rate equals
the service rate, an entity generation event and a service completion
event are simultaneous. Parameters in the model determine which of
these events occurs first, though the clock has the same value in both
cases.

time-based simulation
A simulation in which state transitions depend on time.

For example, a simulation based solely on differential equations in
which time is an independent variable is a time-based simulation.

trigger edge
A rising edge or falling edge of a signal. A rising edge is an increase
from a negative or zero value to a positive value (or zero if the initial
value is negative). A falling edge is a decrease from a positive or a zero
value to a negative value (or zero if the initial value is positive).

trigger event
A trigger edge in a signal that is connected to a block configured to react
to trigger edges.

trigger signal
A signal whose trigger edges are used to invoke a behavior during the
simulation.

unavailable
The state of an entity input port that prevents entities from arriving
at the block.

For example, when a Single Server block is empty, its entity input
port is available. When the block is busy serving, its entity input port
is unavailable.

value change event
An increase or decrease in the numerical value of a signal that is
connected to a block configured to react to relevant changes.

Glossary-6

Glossary

zero-duration value
A value that an event-based signal assumes at an instant in time but
that does not persist for a positive duration.

For example, when a full N-server advances one entity to the next block,
the statistical signal representing the number of entities in the block
assumes the value N-1. However, if the departure causes another entity
to arrive at the block at the same time instant, then the statistical
signal assumes the value N. The value of N-1, which does not persist for
a positive duration, is a zero-duration value. This phenomenon occurs
in many situations; see “Multiple Simultaneous Updates” on page 3-13
for details.

Glossary-7

A

Examples

Use this list to find examples in the documentation.

A Examples

Attributes of Entities
“Example: Setting Attributes” on page 1-12
“When to Use Attributes” on page 1-14

A-2

Counting Entities

Counting Entities
“Example: Counting Simultaneous Departures from a Server” on page 1-19
“Example: Resetting a Counter After a Transient Period” on page 1-20

A-3

A Examples

Working with Events
“Example: Comparing Types of Signal-Based Events” on page 2-4
“Example: Race Conditions at a Switch” on page 2-23
“Example: Observing Service Completions” on page 2-30
“Example: Detecting Collisions by Comparing Events” on page 2-32
“Example: Opening a Gate Upon Random Events” on page 2-36
“Example: Counting Events from Multiple Sources” on page 2-38

A-4

Queuing Systems

Queuing Systems
“Example: Event Calendar for a Queue-Server Model” on page 2-11
“Example: Waiting Time in LIFO Queue” on page 4-2
“Example: Serving Preferred Customers First” on page 4-6
“Example: Preemption by High-Priority Entities” on page 4-11
“Example: M/M/5 Queuing System” on page 4-13
“Example: Using Servers in Shifts” on page 6-4

A-5

A Examples

Working with Signals
“Example: Creating a Random Signal for Switching” on page 3-7
“Example: Defining #d Before the First Entity Departure” on page 3-19
“Example: Resampling a Signal Based on Events” on page 3-20
“Example: Sending Queue Length to the Workspace” on page 3-23

A-6

Server States

Server States
“Example: Failure and Repair of a Server” on page 4-18
“Example: Adding a Warmup Phase” on page 4-20

A-7

A Examples

Routing Entities
“Example: Cascaded Switches with Random Selections” on page 5-2
“Example: Cascaded Switches with Round-Robin Sequence” on page 5-4
“Example: Compound Switching Logic” on page 5-5
“Example: Choosing the Shortest Queue” on page 6-8

A-8

Gates

Gates
“Example: Controlling Joint Availability of Two Servers” on page 7-4
“Example: Synchronizing Service Start Times with the Clock” on page 7-6
“Example: Opening a Gate Upon Entity Departures” on page 7-7
“Example: First Entity as a Special Case” on page 7-10

A-9

A Examples

Discrete Event Subsystems
“Example: Adding the Lengths of Two Queues” on page 8-16
“Example: Normalizing a Statistic to Use for Routing” on page 8-17
“Example: Using Event-Based Timing for a Statistical Computation” on
page 8-19
“Example: Ending the Simulation Upon an Event” on page 8-20
“Example: Sending Unrepeated Data to the MATLAB Workspace” on page
8-21
“Example: Focusing on Events, Not Values” on page 8-22
“Example: Detecting Changes from Empty to Nonempty” on page 8-23
“Example: Logging Data About the First Entity on a Path” on page 8-24
“Example: Using Entity-Based Timing for Choosing a Port” on page 8-29
“Example: Performing a Computation on Selected Entity Paths” on page
8-31

A-10

Troubleshooting

Troubleshooting
“Example: Plotting Entity Departures to Verify Timing” on page 9-8
“Example: Plotting Event Counts to Find Roundoff Error” on page 9-12
“Example: Event Logging” on page 11-6
“Example: Entity Logging” on page 11-9
“Example: Discrepancies in Event Times” on page 11-13
“Example: Time-Based Addition of Event-Based Signals” on page 11-17
“Example: Incorrect Sequence of Event Priorities” on page 11-20
“Example: Intergeneration Time of Zero at Simulation Start” on page 11-23
“Example: Absence of Sample Time Hit at Simulation Start” on page 11-24
“Example: Faulty Logic in Feedback Loop” on page 11-25
“Example: Deadlock Resulting from Loop in Entity Path” on page 11-26
“Example: Error Resulting from Loop in Entity Path” on page 11-27
“Example: Invalid Connection of Event-Based Random Number Generator”
on page 11-29
“Example: Sequence of Departures and Statistical Updates” on page 12-5
“Example: Using a #n Signal as a Trigger” on page 12-11

A-11

A Examples

Timers
“Basic Example Using Timer Blocks” on page 10-7
“Timing Multiple Entity Paths with One Timer” on page 10-9
“Restarting a Timer” on page 10-10
“Timing Multiple Processes Independently” on page 10-12

A-12

Statistics

Statistics
“Example: Running a Simulation Repeatedly to Gather Results” on page
10-15
“Example: Running a Simulation and Varying a Parameter” on page 10-17

A-13

A Examples

A-14

Index

IndexA
arbitrary event sequence 2-20

troubleshooting 11-16
Attribute Scope block 16-2
attributes of entities

plots 9-2
reading values 1-17
setting values 1-11
usage 1-14

autoscaling 9-7
axis limits 9-5

B
block-to-block interactions 12-2

C
cascading switch blocks

random 5-2
round robin 5-4

combining events 2-38
conditional events 2-42
Configuration Parameters dialog box 11-32
copying entities 1-22
counting entities

cumulative 1-18
instantaneous 1-18
reset 1-20
storing in attribute 1-21

counting events 9-2
roundoff error 9-12

D
data types 3-3
delays

entities 16-65
signal updates 3-17

discouraged arrivals 13-13

Discrete Event Inport block 16-10
Discrete Event Outport block 16-12
Discrete Event Signal to Workspace

block 16-13
Discrete Event Subsystem block 16-16

building subsystems 8-11
discrete event subsystems 8-7

blocks inside 8-10
building

entity departures 8-27
function calls 8-32
signal-based events 8-11

combinations of events 8-32
entity departures 8-26
events in terminated signals 8-22
function calls 8-32
need for 8-2
sequence of events 8-8
signal-based events 8-14

discrete state plots 9-4
discrete-event plots 9-4

compared to time-based plots 9-15
customizing 9-7
saving FIG-file 9-7
troubleshooting using 9-8

E
Enabled Gate block 16-18
enabled gates 7-4
entities

counting 1-18
event-based generation 1-2
logging 11-8
replicating 1-22

entity collisions 2-32
entity data

plots 9-2
reading values 1-17
setting values 1-11

Index-1

Index

usage 1-14
Entity Departure Counter block 16-21
Entity Departure Event to Function-Call

Event block 16-26
entity generation

changes in signal value 1-4
event-based 1-2
function calls 1-7
trigger edges 1-5
updates in signal value 1-2

entity logging 11-8
Entity Sink block 16-32
Entity-Based Function-Call Event Generator

block 16-34
entity-departure subsystems 8-26
equal event priorities 2-20

troubleshooting 11-16
event calendar 2-9

events on 2-9
example 2-11
logging 11-2

event logging 11-2
Event-Based Entity Generator block 16-37
Event-Based Random Number block 16-43
event-based signals

description 3-2
feedback loops 11-23
initial conditions 3-18
integrating 8-3
latency 11-19
manipulating 3-18
MATLAB workspace 3-23
random 3-4
resampling 3-20
troubleshooting 11-17
unrepeated values to workspace 8-21
update sequence 3-10

events
conditionalizing 2-42
generating 2-34

manipulating 2-37
observing 2-28
priorities 2-19
sequence 2-21
supported types 2-2
translating 2-41
troubleshooting 11-13
union 2-38

F
failure modeling

conditional events 2-43
gates 4-16
Stateflow 4-17

feedback entity paths
troubleshooting 11-26

feedback loops
troubleshooting 11-23

FIFO Queue block 16-56
first-order-hold plots 9-4
function calls 2-7

generating 2-34
function-call subsystems

discrete event 8-32

G
G/G/1 queuing systems 13-10
gates 7-1

combinations 7-9
enabled 7-4
entity departures 7-7
release 7-6
role in modeling 7-2
types 7-3

Get Attribute block 16-61

I
independent replications 10-13

Index-2

Index

Infinite Server block 16-65
initial conditions 3-18

feedback loops 11-23
initial seeds 10-13
Input Switch block 16-70
Instantaneous Entity Counting Scope

block 16-75
Instantaneous Event Counting Scope

block 16-80
instantaneous gate openings 7-6
integration

event-based signals 8-3
intergeneration times

event generation 2-36
interleaved operations 12-4

L
latency

interleaved operations 12-4
signal updates 3-17
troubleshooting 11-19

LIFO Queue block 16-85
LIFO queues 4-2
Little’s law 13-10
logging entities 11-8
logging events 11-2
logic

block diagrams 6-3
usage in discrete-event simulations 6-2

loops in entity paths 11-26

M
M/D/1 queuing systems 13-9
M/M/1 queuing systems 13-7
M/M/5 queuing systems 4-13
monitoring ports 16-43

N
N-Server block 16-90
n-servers 4-13
nonstorage blocks 12-4
notifying ports 3-4

O
Output Switch block 16-96

P
Path Combiner block 16-102
plots 9-1

customizing 9-7
troubleshooting using 9-8
zero-duration values 3-14

ports
event-based random numbers 16-43
notifying 3-4

preemption in servers 4-10
priorities, entity

priority queues with preemptive
servers 4-11

queue sequence 4-5
server preemption 4-10

priorities, event 2-19
troubleshooting 11-16

Priority Queue block 16-108

Q
queues

choosing shortest 6-8
LIFO vs. FIFO 4-2
preemptive servers 4-11
priority 4-5

queuing systems
discouraged arrivals 13-13
G/G/1 13-10

Index-3

Index

M/D/1 13-9
M/M/1 13-7
M/M/5 4-13

R
race conditions 2-23
random

signals 3-4
random event sequence 2-20

troubleshooting 11-16
random numbers

event-based 3-4
switch selection 3-7
time-based 3-8

reactive ports 16-43
Read Timer block 16-113
Release Gate block 16-118
release gates 7-6
repeating simulations 10-15
Replicate block 16-122
replication of entities 1-22
replications

independent 10-13
resampling signals 3-20
residual service time 4-10
roundoff error

discrete-event plots 9-12
event times 11-13

running simulations
repeatedly 10-15
varying parameters 10-17

S
sample time 3-2
scatter plots 9-4
scope blocks 9-1

zero-duration values 3-14
seed of random number generator

independent replications 10-13
server states 4-16
servers

failure states 4-16
infinite 16-65
multiple 4-13
preemption 4-10

Set Attribute block 16-127
Signal Latch block 16-131
Signal Scope block 16-141
Signal-Based Event to Function-Call Event

block 16-149
signal-based events

comparison 2-4
definition 2-3

Signal-Based Function-Call Event Generator
block 16-155

signals
event-based 3-2
random 3-4

simeventsconfig function 14-2
simeventslib function 14-3
simeventsstartup function 14-4
simulation parameters

varying in repeated runs 10-17
simultaneous events

discrete event subsystems 8-8
event priorities 2-19
interleaved operations 12-4
sequential processing 2-21
signal updates 3-13
troubleshooting 11-13
unexpected 11-13

Single Server block 16-159
stack 4-2
stairstep plots 9-4
Start Timer block 16-169
Stateflow and SimEvents 4-17
statistics 10-2

accessing from blocks 10-4

Index-4

Index

discrete event subsystems 8-3
interleaved updates 12-4
latency 3-17

Statistics tab 10-4
stem plots 9-4
stop time 10-20

event-based timing 8-2
storage blocks 12-4

changing processing sequence 12-6
looped entity paths 11-26

Subsystem Configuration block 16-172
switching entity paths

random with cascaded blocks 5-2
repeating sequence 8-4
round robin with cascaded blocks 5-4

synchronizing entities 7-6

T
time-based blocks

zero-duration values 12-10
Time-Based Entity Generator block 16-173
timer tags 10-8
timers 10-7

independent 10-12
multiple entity paths 10-9
restarting 10-10

triggers
zero-duration values 12-11

V
visualization 9-1

zero-duration values 3-14

W
workspace 3-23

unrepeated signal values 8-21

X
X-Y Attribute Scope block 16-182
X-Y Signal Scope block 16-189

Z
zero-duration values

definition 3-13
MATLAB workspace 3-16
time-based blocks 12-10
visualization 3-14

zero-order hold
plots 9-4

Index-5

	toc
	Working with Entities
	Generating Entities When Events Occur
	Detecting Sample Time Hits
	Configuring the Block to Detect Sample Time Hits
	Sample Use Cases

	Detecting Changes in Signal Values
	Configuring the Block to Detect Value Changes
	Sample Use Cases

	Detecting Edges in Trigger Signals
	Configuring the Block to Detect Edges
	Sample Use Cases

	Detecting Function Calls
	Configuring the Block to Detect Function Calls
	Sample Use Cases

	Setting Attributes of Entities
	Example: Setting Attributes
	When to Use Attributes
	Example Reusing Data
	Example Manipulating Data

	Accessing Attributes of Entities
	Counting Entities
	Counting Departures Across the Simulation
	Counting Departures per Time Instant
	Example: Counting Simultaneous Departures from a Server

	Resetting a Counter Upon an Event
	Example: Resetting a Counter After a Transient Period

	Associating Each Entity with Its Index

	Replicating Entities on Multiple Paths
	Departure Port Precedence

	Working with Events
	Supported Events in SimEvents Models
	Types of Supported Events
	Signal-Based Events
	Example: Comparing Types of Signal-Based Events

	Function Calls

	Using the Event Calendar
	Events That Appear on the Event Calendar
	Choosing Whether to Put Events on the Event Calendar

	Example: Event Calendar for a Queue-Server Model
	Start of Simulation
	Generation of First Entity
	Generation of Second Entity
	Completion of Service Time
	Generation of Third Entity
	Generation of Fourth Entity
	Completion of Service Time

	Setting Event Priorities
	Events with Equal Priorities

	Processing Sequence for Simultaneous Events
	Choosing an Approach for Simultaneous Events

	Example: Race Conditions at a Switch
	Selecting a Port First
	Generating Entities First
	Randomly Selecting a Sequence

	Observing Events
	Example: Observing Service Completions
	Example: Detecting Collisions by Comparing Events

	Generating Function-Call Events
	Generating Events When Other Events Occur
	Example: Calling a Stateflow Block Upon Changes in Server Conten

	Generating Events Using Intergeneration Times
	Example: Opening a Gate Upon Random Events

	Manipulating Events
	Blocks for Manipulating Events
	Creating a Union of Multiple Events
	Example: Counting Events from Multiple Sources
	Example: Executing a Subsystem Based on Multiple Types of Events

	Translating Events to Control the Processing Sequence
	Example: Issuing Two Function Calls in Sequence
	Example: Generating a Function Call with an Event Priority

	Conditionalizing Events
	Example: Modeling Periodic Shutdown of an Entity Generator

	Working with Signals
	Role of Event-Based Signals in SimEvents Models
	Comparison With Time-Based Signals

	Generating Random Signals
	Generating Random Event-Based Signals
	Implied Timing of Random Number Generation
	Generating Random Signals Based on Arbitrary Events

	Examples of Random Event-Based Signals
	Example: Creating a Random Signal for Switching

	Generating Random Time-Based Signals

	Sequence of Updates of Output Signals
	Example: Detecting Changes in the Last-Updated Signal

	Multiple Simultaneous Updates
	Zero-Duration Values of Signals
	Scenario: Server Departure and New Arrival
	Scenario: Status of Pending Entities in a Queue

	Importance of Zero-Duration Values
	Detecting Zero-Duration Values
	Plotting Signals that Exhibit Zero-Duration Values
	Plotting the Number of Signal Changes Per Time Instant
	Viewing Zero-Duration Values in the MATLAB Workspace

	Latency in Signal Updates
	Manipulating Signals
	Defining Initial Conditions for Event-Based Signals
	Example: Defining #d Before the First Entity Departure

	Example: Resampling a Signal Based on Events

	Sending Data to the MATLAB Workspace
	Example: Sending Queue Length to the Workspace
	Using the To Workspace Block with Event-Based Signals

	Modeling Queues and Servers
	Using a LIFO Queuing Discipline
	Example: Waiting Time in LIFO Queue

	Sorting by Priority
	Example: Serving Preferred Customers First
	Comparison with Unsorted Behavior

	Preempting an Entity in a Server
	Criteria for Preemption
	Residual Service Time
	Queuing Disciplines for Preemptive Servers
	Example: Preemption by High-Priority Entities

	Modeling Multiple Servers
	Example: M/M/5 Queuing System

	Modeling the Failure of a Server
	Server States
	Using a Gate to Implement a Failure State
	Using Stateflow to Implement a Failure State
	Example: Failure and Repair of a Server
	Example: Adding a Warmup Phase

	Routing Techniques
	Example: Cascaded Switches with Random Selections
	Six-Way Switching Component
	Five-Way Switching Component

	Example: Cascaded Switches with Round-Robin Sequence
	Example: Compound Switching Logic

	Using Logic
	Role of Logic in SimEvents Models
	Using Logic Blocks
	Example: Using Servers in Shifts
	Index Computation 1
	Index Computation 2
	Top Level of the Model

	Example: Choosing the Shortest Queue

	Regulating Arrivals Using Gates
	Role of Gates in SimEvents Models
	Accessing Gate Blocks
	Types of Gates

	Keeping a Gate Open Over a Time Interval
	Example: Controlling Joint Availability of Two Servers

	Opening a Gate Instantaneously
	Example: Synchronizing Service Start Times with the Clock
	Example: Opening a Gate Upon Entity Departures
	Alternative Using Value Change Events

	Using Logical Combinations of Gates
	Example: First Entity as a Special Case

	Controlling Timing Using Subsystems
	Timing Issues in SimEvents Models
	Timing for the End of the Simulation
	Time-Based Default Behavior
	Achieving Correct Event-Based Behavior

	Timing for a Statistical Computation
	Time-Based Integration
	Achieving Correct Event-Based Behavior

	Timing for Choosing a Port Using a Sequence

	Role of Discrete Event Subsystems in SimEvents Models
	Purpose of Discrete Event Subsystems
	Processing Sequence for Events in Discrete Event Subsystems

	Blocks Inside Discrete Event Subsystems
	Working with Discrete Event Subsystem Blocks
	Setting Up Signal-Based Discrete Event Subsystems
	Signal-Based Events That Control Discrete Event Subsystems
	Comparison of Event Types for Discrete Event Subsystems

	Examples Using Discrete Event Subsystem Blocks
	Example: Adding the Lengths of Two Queues
	Example: Normalizing a Statistic to Use for Routing
	Example: Using Event-Based Timing for a Statistical Computation
	Example: Ending the Simulation Upon an Event
	Example: Sending Unrepeated Data to the MATLAB Workspace
	Example: Focusing on Events, Not Values
	Example: Detecting Changes from Empty to Nonempty
	Example: Logging Data About the First Entity on a Path

	Creating Entity-Departure Subsystems
	Accessing Blocks for Entity-Departure Subsystems
	Setting Up Entity-Departure Subsystems

	Examples Using Entity-Departure Subsystems
	Example: Using Entity-Based Timing for Choosing a Port
	Example: Performing a Computation on Selected Entity Paths

	Using Function-Call Subsystems
	Use Cases for Function-Call Subsystems
	Setting Up Function-Call Subsystems in SimEvents Models

	Plotting Data
	Choosing and Configuring Plotting Blocks
	Sources of Data for Plotting
	Inserting and Connecting Scope Blocks
	Connections Among Points in Plots
	Varying Axis Limits Automatically
	Examples Using Scope Blocks

	Plotting Window Features
	Using Plots for Troubleshooting
	Example: Plotting Entity Departures to Verify Timing
	Model Exhibiting Correct Timing
	Model Exhibiting Latency

	Example: Plotting Event Counts to Find Roundoff Error
	Model Exhibiting Simultaneous Events
	Model Exhibiting Nonsimultaneous Events

	Comparison with Time-Based Plotting Tools

	Using Statistics
	Role of Statistics in Discrete-Event Simulation
	Statistics for Data Analysis
	Statistics for Run-Time Control

	Accessing Statistics from SimEvents Blocks
	Accessing Statistics Throughout the Simulation
	Accessing Statistics When Stopping or Pausing Simulation

	Using Timers
	Basic Example Using Timer Blocks
	Basic Procedure for Using Timer Blocks
	Timing Multiple Entity Paths with One Timer
	Output Switch Example
	Input Switch Example

	Restarting a Timer
	Timing Multiple Processes Independently

	Running a Series of Simulations
	Creating Independent Replications
	Choosing Values for Initial Seed
	Setting Values for Initial Seed

	Running Simulations from MATLAB
	Example: Running a Simulation Repeatedly to Gather Results
	Example: Running a Simulation and Varying a Parameter

	Regulating the Simulation Length
	Setting a Fixed Stop Time
	Stopping Based on Entity Count
	Stopping Upon Reaching a Particular State

	Troubleshooting Discrete-Event Simulations
	Viewing the Event Calendar
	Turning Event Logging On
	Logging the Processing of Events
	Logging the Scheduling of Events
	Logging the List of Events
	Example: Event Logging
	Interpreting the Event Logging Messages

	Viewing Entity Locations
	Turning Entity Logging On
	Interpreting Entity Logging Messages
	Example: Entity Logging

	Common Problems in SimEvents Models
	Unexpectedly Simultaneous Events
	Unexpectedly Nonsimultaneous Events
	Example: Discrepancies in Event Times

	Unexpected Processing Sequence for Simultaneous Events
	Time-Based Block Not Recognizing Certain Trigger Edges
	Incorrect Timing of Signals
	Example: Time-Based Addition of Event-Based Signals

	Unexpected Use of Old Value of Signal
	Example: Incorrect Sequence of Event Priorities

	Effect of Initial Condition on Signal Loops
	Example: Intergeneration Time of Zero at Simulation Start
	Example: Absence of Sample Time Hit at Simulation Start
	Example: Faulty Logic in Feedback Loop

	Loops in Entity Paths Without Storage Blocks
	Example: Deadlock Resulting from Loop in Entity Path
	Example: Error Resulting from Loop in Entity Path

	Unexpected Timing of Random Signal
	Example: Invalid Connection of Event-Based Random Number Generat

	Unexpected Correlation of Random Processes

	Configuration Parameters for SimEvents Models

	How SimEvents Works
	Notifications and Queries Among Blocks
	Querying Whether a Subsequent Block Can Accept an Entity
	Notifying Blocks About Status Changes

	Interleaved Operations of Storage and Nonstorage Blocks
	Storage Blocks
	Nonstorage Blocks
	Example: Sequence of Departures and Statistical Updates
	Altering the Processing Sequence
	Consequences of Inserting a Storage Block

	Zero-Duration Values and Time-Based Blocks
	Example: Using a #n Signal as a Trigger

	Demonstration Models
	Tutorial Demos
	Attributes: Data Within Entities
	Service Time From Attribute
	Specifying Service Time in Single Server
	Specifying Service Time in Infinite Server Block
	Single Server Block Versus Infinite Server Block
	Start Timer and Read Timer Blocks
	Release Gate: Value Change Versus Trigger
	Input Switching Using Signal
	Output Switching Using Signal
	Path Combiner Versus Input Switch
	Time-Driven and Event-Driven Addition
	Counting Instantaneous Events
	Preload Queue with Entities

	Queuing Systems
	M/M/1 Queuing System
	Structure of the Model
	Results and Displays
	Theoretical Results
	Experimenting with the Model
	References

	M/D/1 Queuing System
	Structure of the Model
	Results and Displays
	Theoretical Results
	Experimenting with the Model
	References

	G/G/1 Queuing System and Little's Law
	Structure of the Model
	Results and Displays
	Little's Law
	Experimenting with the Model
	References

	Single Server Versus N-Server
	Single Queue Versus Multiple Queues
	A Queuing System with Discouraged Arrivals
	Structure of the Model
	Results and Displays
	Theoretical Results
	Experimenting with the Model
	References

	Prioritized Queuing Policy Comparison
	Preemption Policy Comparison

	Application Demos
	Shared Access Communications Media
	Dynamic Voltage Scaling Using Online Gradient Estimation
	Applying IPA to the Controller
	Structure of the Model
	Results and Displays
	References

	Comparison of Routing Policies
	F-14 Flight Control Over a Network
	Selective-Repeat Automatic Repeat Request
	Tank Filling Station
	Astable Multivibrator Circuit
	Circuit Operation
	Structure of the Demo

	Functions – Alphabetical List
	Blocks – Categorical List
	Generators
	Entity Generators
	Event Generators
	Signal Generators

	SimEvents Sinks
	Attributes
	Queues
	Servers
	Routing
	Gates
	SimEvents Ports and Subsystems
	Timing
	Probes
	Event Translation

	Blocks – Alphabetical List
	Resetting the Counter upon Trigger Edges
	Resetting the Counter upon Value Changes
	Assigning a Constant Value Using This Dialog Box
	Assigning a Value Using an Input Signal
	Reading from Memory Upon Each Write Event
	Independent Read and Write Events

	Glossary
	Examples
	Attributes of Entities
	Counting Entities
	Working with Events
	Queuing Systems
	Working with Signals
	Server States
	Routing Entities
	Gates
	Discrete Event Subsystems
	Troubleshooting
	Timers
	Statistics

	Index

	tables
	Notifying Ports
	Entity Input Ports
	Entity Output Ports
	Signal Output Ports
	Signal Input Ports
	Signal Output Ports
	Entity Input Ports
	Signal Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Signal Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Signal Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Signal Output Ports
	Entity Input Ports
	Entity Output Ports
	Signal Output Ports
	Signal Input Ports
	Entity Output Ports
	Signal Output Ports
	Notifying Ports
	Monitoring Ports
	Reactive Ports
	Entity Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Signal Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Signal Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Entity Output Ports
	Signal Input Ports
	Entity Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Signal Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Signal Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Signal Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Signal Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Signal Input Ports
	Entity Output Ports
	Signal Output Ports
	Signal Input Ports
	Signal Output Ports
	Signal Input Ports
	Signal Output Ports
	Signal Input Ports
	Signal Output Ports
	Signal Input Ports
	Signal Output Ports
	Entity Input Ports
	Signal Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Entity Output Ports
	Signal Output Ports
	Immediate Restart
	Delayed Restart
	Signal Input Ports
	Entity Output Ports
	Signal Output Ports
	Entity Input Ports
	Entity Output Ports
	Signal Output Ports
	Signal Input Ports
	Signal Output Ports

